
A MATHEMATICAL MODEL ANALYSIS OF OPTIMIZATION ALGORITHMS IN DEEP

LEARNING.

Abstract. This paper presents a rigorous mathematical analysis of optimization algorithms central to deep learning,
including Gradient Descent (GD), Stochastic Gradient Descent (SGD), Momentum, Adam, and AMSGrad. We

compare and discuss the update rules for each algorithm, delving into their underlying mathematical techniques
such as Taylor expansions for approximating loss functions and gradients, and the theory of dynamical systems for
understanding acceleration properties. We prove their convergence properties under standard assumptions, including

convexity, smoothness (Lipschitz continuity of gradients), and strong convexity. Furthermore, we analyze their rates

of convergence for various scenarios, such as O(1/t) for convex and smooth functions in GD, and O(1/
√
t) for

stochastic methods in non-convex settings. We also consider the impact of bounded gradients in stochastic settings

and the use of Lyapunov functions for proving convergence. Through this analysis, we aim to bridge the gap between
theory and practice, offering insights into the design and application of optimization algorithms in deep learning.

Keywords Optimization Algorithms; Deep Learning; Gradient Descent; Stochastic Gradient Descent; Momen-

tum; Adam; AMSGrad; Convergence Analysis; Convexity; Smoothness.

1. Introduction

Optimization algorithms are the cornerstone of deep learning, enabling the training of complex models by mini-
mizing high-dimensional and often non-convex loss functions. The success of deep learning in applications such as
image recognition [24], natural language processing [21], and reinforcement learning [16] hinges on the efficiency, ro-
bustness, and theoretical soundness of these optimization methods. While empirical advancements have driven the
development of algorithms like Gradient Descent (GD), Stochastic Gradient Descent (SGD), Momentum, Adam, and
AMSGrad, a rigorous mathematical understanding of their convergence properties, rates, and limitations remains
essential for both theoretical and practical progress.

The primary objective of this paper is to provide a mathematical analysis of these optimization algorithms,
focusing on their update rules, convergence guarantees, and rates of convergence. We begin with the foundational
Gradient Descent (GD) algorithm, which updates parameters using the gradient of the loss function. GD is con-
ceptually simple and has well-understood convergence properties in the context of convex and smooth functions
[1, 6]. However, its computational inefficiency for large datasets has led to the development of Stochastic Gradient
Descent (SGD), which approximates the gradient using a single data point or a mini-batch. SGD not only reduces
computational cost but also introduces stochasticity that helps escape local minima [2, 16]. Recent advances in SGD
have further improved its performance through techniques such as adaptive learning rates and variance reduction
[16, 27].
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To further enhance the speed of convergence in optimization, the Momentum method introduces a fraction of
the previous update into the current gradient step. This effectively smooths the optimization trajectory, reducing
erratic oscillations and improving stability. Momentum is conceptually linked to Nesterov’s accelerated gradient
method and has been shown to yield significantly faster convergence rates, particularly for strongly convex functions
[3, 30].

Momentum-based techniques have become widely used in practice due to their ability to navigate challenging
optimization landscapes, including flat regions and saddle points, more effectively than standard gradient descent
[30, 31]. However, traditional Momentum methods do not inherently adjust the learning rate, which can be a
drawback in non-convex optimization problems. To address this limitation, Adam (Adaptive Moment Estimation)
was developed. Adam extends Momentum by maintaining moving averages of both the gradients and their squared
values, allowing for dynamic adjustment of the learning rate. This adaptability makes Adam particularly well-suited
for deep learning applications, where it has gained widespread popularity for its robustness and computational
efficiency [17, 21].

Despite its empirical success, Adam has faced criticism regarding its theoretical convergence properties. In
certain non-convex settings, the use of an exponential moving average of squared gradients can lead to situations
where the learning rate decreases too aggressively, resulting in suboptimal performance [17, 21]. To overcome these
shortcomings, AMSGrad was introduced as a modification to Adam. Unlike Adam, which continuously updates
its squared gradient estimates, AMSGrad maintains the maximum of all past squared gradients, ensuring that the
effective learning rate does not decrease too quickly. This adjustment provides stronger convergence guarantees,
particularly for non-convex optimization problems [3, 17].

Recent research has further explored hybrid optimization approaches that integrate the strengths of multiple
methods[18, 19]. For instance, some techniques combine Adam with stochastic gradient descent (SGD) or incorpo-
rate momentum into adaptive learning rate algorithms. These hybrid strategies aim to improve generalization and
stability, especially in complex, high-dimensional loss landscapes [8, 21].

This paper provides a unified framework for understanding these algorithms, highlighting their theoretical
strengths and limitations. By deriving their update rules, proving their convergence properties, and analyzing
their rates of convergence, we aim to bridge the gap between theory and practice in deep learning optimization.
Our analysis is grounded in rigorous mathematical principles, including convexity, smoothness, and Lipschitz con-
tinuity, and draws on recent advancements in optimization theory [6], [16], [17].

The key contributions of this paper are summarized as follows:

(1) Rigorous Mathematical Derivations – We provide a detailed derivation of the update rules for Gradient
Descent (GD), Stochastic Gradient Descent (SGD), Momentum, Adam, and AMSGrad. Our analysis
emphasizes the mathematical foundations of these algorithms and explores their connections to dynamical
systems, offering a deeper theoretical perspective [3], [30].

(2) Convergence Proofs – We establish formal convergence proofs for each optimization algorithm under
widely accepted assumptions, including convexity, smoothness, and Lipschitz continuity. By leveraging
recent advancements in optimization theory, we rigorously demonstrate the conditions under which these
algorithms achieve convergence [6], [16], [17].

(3) Convergence Rate Analysis – We conduct a comprehensive analysis of the convergence rates of these
optimization methods, providing both theoretical insights and practical implications. Our results shed
light on the efficiency of each algorithm in different optimization scenarios, helping to clarify their relative
advantages and limitations [1], [3], [16].

(4) A Unified Comparative Framework – We introduce a unified framework for systematically comparing
these optimization algorithms. This framework highlights their underlying similarities and key differences
while also discussing their practical suitability for various deep learning tasks. By offering a structured
comparison, we aim to provide valuable guidance for choosing the most appropriate optimization technique
in different settings [17], [21], [30].

Optimization algorithms are fundamental to deep learning, enabling the training of complex models by minimizing
high-dimensional and often non-convex loss functions. The efficiency, robustness, and theoretical soundness of these
methods are crucial for the success of deep learning applications like image recognition, natural language processing,
and reinforcement learning [1]. While empirical advancements have driven the development of algorithms such as
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Gradient Descent (GD), Stochastic Gradient Descent (SGD), Momentum, Adam, and AMSGrad, a rigorous math-
ematical understanding of their convergence properties, rates, and limitations remains essential for both theoretical
and practical progress. Recent surveys also provide overviews of optimization algorithms in modern neural networks
[2]. Gradient Descent (GD) is a foundational algorithm that updates parameters by moving in the direction of the
negative gradient of the loss function. It is conceptually simple and has well-understood convergence properties for
convex and smooth functions. However, its computational inefficiency for large datasets led to the development of
Stochastic Gradient Descent (SGD), which approximates the gradient using a single data point or a mini-batch.
SGD not only reduces computational cost but also introduces stochasticity that can help escape local minima.
Recent advances in SGD have further improved its performance through techniques such as adaptive learning rates
and variance reduction [3]. To enhance convergence speed, the Momentum method was introduced, incorporating a
fraction of the previous update into the current gradient step. This technique effectively smooths the optimization
trajectory, reduces erratic oscillations, and improves stability. Momentum is conceptually linked to Nesterov’s accel-
erated gradient method and has been shown to yield significantly faster convergence rates, particularly for strongly
convex functions. Momentum-based techniques have become widely used due to their ability to navigate challenging
optimization landscapes, including flat regions and saddle points, more effectively than standard gradient descent
[4,5,6]. Addressing limitations of traditional Momentum, such as not inherently adjusting the learning rate, Adam
(Adaptive Moment Estimation) was developed. Adam extends Momentum by maintaining moving averages of both
the gradients and their squared values, allowing for dynamic adjustment of the learning rate [6]. This adaptability
makes Adam particularly well-suited for deep learning applications, where it has gained widespread popularity for
its robustness and computational efficiency. Despite its empirical success, Adam has faced criticism regarding its
theoretical convergence properties. In certain non-convex settings, the use of an exponential moving average of
squared gradients can lead to situations where the learning rate decreases too aggressively, resulting in suboptimal
performance [7]. AMSGrad was introduced as a modification to Adam to overcome these shortcomings. Unlike
Adam, which continuously updates its squared gradient estimates, AMSGrad maintains the maximum of all past
squared gradients, ensuring that the effective learning rate does not decrease too quickly [8,9]. This adjustment
provides stronger convergence guarantees, particularly for non-convex optimization problems. Recent research has
further explored hybrid optimization approaches that integrate the strengths of multiple methods. For instance,
some techniques combine Adam with stochastic gradient descent (SGD) or incorporate momentum into adaptive
learning rate algorithms [10]. These hybrid strategies aim to improve generalization and stability, especially in
complex, high-dimensional loss landscapes.

2. Mathematical Preliminaries

Let θ ∈ Rd denote the parameters of a deep learning model, where d is the number of parameters, let k(θ)
represent the loss function that maps the parameters to a scalar value quantifying the performance of the model,
∇k(θ) represents the loss function gradient with respect to the parameter θ, let η represent the learning rate, η > 0.
An stepsize control of parameter updates, and if the iteration number in the optimization process is sufficiently large,
the analysis of the optimization algorithm converges, we prepare the following standard assumptions concerning
the loss function’s k(θ).

(i) The loss function k(θ) is convex, if θ1, θ2 ∈ Rd and α ∈ [0, 1]

L (αθ1 + (1− α)θ2) ≤ αL(θ1) + (1− α)L(θ2) (1)

(ii) In non-convex settings is relaxed and very common to deep learning.
(2) The L(θ) is L-smooth, hence it gradient is Lipschitz continuous:

∥∇L(θ1)−∇L(θ2)∥ ≤ L∥θ1 − θ2∥ (2)

where L > 0 is the Lipschitz constant and ensures there is no rapid change in the gradient.
(3) L(θ) is considered µ-strongly convex ⇐⇒ θ1, θ2 ∈ Rd

L(θ2) ≥ L(θ1) +∇L(θ1)(θ2 − θ1) +
µ

2
∥θ2 − θ1∥2 (3)

where µ > 0 is the strong convexity parameter, this is together at quicker convergence rates.
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(4) Assuming the gradients are bounded, i.e. in stochastic settings, x ∈ R s.t.

||∇Li(θ)|| ≤ G, ∀i, θ ∈ R. (4)

where Li(θ) represents the loss for a single data pt or mini batch.

Convergence Criteria. The optimization algorithm’s performance is evaluated based on their ability to converge
to a stationary point or the global minimum of the loss function L(θ), let us consider the following criteria for
convergence:

(i) An algorithm is regarded as convergent if the gradients of the loss function → 0. i.e.:

lim
t→∞

||∇L(θt)|| = 0.

This criteria for non-convex optimization is very common.
(2) Quantification with the use of big-O notation for examples O(k) is the sublinear rate of convergence for a

typical convex functions, O(1 − µ/k)d The linear convergence rate and O(1/
√
k the convergence rate for

stochastic methods in non-convex settings.
(3) For stochastic scenarios, an algorithm is said to converge almost surely if

Pr
(
lim
t→∞

||∇L(θt)|| = 0
)
= 1

Much is obviously a stronger form of convergence. That accounts for the randomness in Stochastic gradients
[2,5].

Mathematical Tools. Key mathematical tools like Taylor expansion, inequality and dynamical systems for the
analysis of optimization algorithms relies on several mathematical tools and techniques.

Taylor Expansion. Taylor expansion are used to approximate the loss function and its gradients, providing
insights into the process of optimization locally.

For L(θ), the first-order Taylor expansion around θt ∈ θ is given as:

L(θt+1) ≈ L(θt) +∇L(θt)
′(θt+1 − θt) (5)

where θt+1 = θt−2∇L(θt) for gradient descent. The change in L(θ) is analysed by this approximation after each
update and to derive convergence guarantees [6,7].

For second order method, we apply the Taylor series expansion:

L(θt+1) ≈ L(θt) +∇L(θt)
T (θt+1 − θt)

+
1

2
(θt+1 − θt)

T∇2L(θt)(θt+1 − θt).

where ∇2L(θt) is the Hessian matrix. This will provide a theoretical foundation in the curvature of the loss
landscape [6,7].

Dynamical Systems. In this paper, we will recognise and apply the theory of dynamical system. Now, moment-
based optimization algorithms can be explained as discretization of dynamic systems providing insights into their
acceleration properties, i.e. the moment update rule:

v2t+1 = γv2t + η∇L(θt),

θt+1 = θt − vt+1

(6)

Can we seem as a discretization of the differential equation given as

θ̈(t) + γθ̇(t) +∇L(θ(t)) = 0 (7)

where γ represents the damping coefficient.
The equation permits the analysis momentum as a system itself is clearly dynamical and completely its acceler-

ation properties with respect to energy dissipation and oscillations reduction [3,28].
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Stochastic Approximation. Another important tool is the stochastic approximation, which is a structure for
the analysis of optimisation algorithms that applies stochastic (noisy) arguments.

The main idea is to construct the stochastic gradient as a random variable with harmonic variance:

E[∇Li(θt)] = ∇L(θt), E[∇Li(θt)−∇L(θt)]] ≤ σ2 (8)

with σ2 is the variance of the stochastic gradient. This structure is applied to prove convergent and dense
convergence rates for stochastic gradient descent (SGD) and its variants [21,35].

Lyapunov Functions. Furthermore, the Lyapunov functions V (θt) is a non-negative V (θt) to a non-negative
function that decreases over time, and satisfies:

V (θt+1) ≤ V (θt)− αt (9)

with αt = αt > 0. The progress achieved at an intermin t, for example, in the analysis of GD. The lyapunov
function can be selected as K(θ), and αt is derived using smoothness and the assumptions of Convexity [6,7].

Optimization Algorithms.

2.1. Gradient Descent (GD). The most fundamental algorithms in optimization in deep learning is undoubtedly
the gradient descent. It updates the novel parameters by moving iteratively through the direction of the negative
gradient of the loss function. Here, we consider and formulate the update rule for GD, analyze the convergence
properties and discuss its limitations.

The update rule, its algorithm updates θt at each time using

θt+1 = θt − η∇L(θt), (10)

this updates is desired from (7), as minimizes L(θt+1), we choose θt+1 s.t. ∇L(θt)
T (θt+1 − θt) to minimized.

This leads to the update rule of GD [1], [6].
The convergence of GD depends on the properties of the L(θ) such as convexity and smoothness during as the

L(θ) which is convex and L-smooth, then GD converges by the Grisae minimum θ∗ such that

L(θt)− L(θ∗) ≤ L∥θ0 − θ∗∥2

2t
, t ̸= 0. (11)

θ0 is the initial parameter vector, thus follows that GD achieves a sublinear convergence rate of O(1/t) for smooth
and convex functions [1], [6].

If L(θ) is µ-strongly convex, the convergence rate improves to

∥θt − θ∗∥2 ≤ (1− µ

L
)t∥θ0 − θ∗∥2 (12)

⇔ GD achieves a linear convergence rate of O((1− µ/L)t) for strongly convex functions [7].
and for non-convex functions, GD converges to a stationary point with ∇L(θt) = 0, s.t.

min
1≤k≤t

∥∇L(θk)∥2 ≤ 2(L(θ0)− L(θ∗))

ηt
, t ̸= 0. (13)

The convergence rate is given by: This follows that GD achieves a sublinear convergence rate of O(1/t) for
non-convex functions [6,7].

The limitations of GD include computational cost [16,17], slow convergence [7,15] and sensitivity to learning rate
[13] and [6], this limitation have been addressed by its variants like SGD that involves updating parameters using a
single point (data point) of mini-batch, reducing computation costs and bringing in stochasticity [16,22], Nesterov
Accelerated Gradient (NAG) - a variant of momentum that applies a ”look-ahead” gradient to improve convergence
further.
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Stochastic Gradient Descent (SGD). SGD is a particularly applied optimization algorithm for deep learning
that tackles the computational inefficiency of gradient descent (GD) by approximating the gradient with the use of
mini-batch as single data. The update rule is given as

θt+1 = θt − η∇Li(θt) (14)

and Li(θ) is the loss function for a sample data point i. Unlike GD that performs the computation over the
unit data set entirely, this makes SGD computationally efficient for large data sets [31,14]. Here, for the bounded
variance, (11) still holds but on the basis

E[L(θt)− L(θ∗)] ≤ ∥θ0 − θ∗∥2

2ηt
+

ησ2

2
(15)

by picking a diminishing learning rate ηt = 1√
t
, say a sublinear convergence rate of O(1/

√
t) for smooth and

convex functions [27] [25]. For strongly convex and functions, SGD converges to a stationary point s.t. ∇L(θt) = 0,
then convergence rate is given by:

E
[
min

1≤k≤t
∥∇L(θk)∥2

]
≤ 2(L(θ0)− L(θ∗))

ηt
+ ησ2. (16)

(20) implies that SGD achieves a sublinear convergence rate of O(1/
√
t). For non-convex functions. The lim-

itations of SGD includes high variance with noisy updates. One widely observed limitation is the sensitivity to
learning rate [16,31] and lack of ability based on the geometry of the loss landscape which can lead to performance
that is suboptimal in all-constrained problem [16,28]. The Variants of SGD includes Momentum [31,28], AdaGrad
[16,25] and Adam which hypothesize benefits of momentum and of adaptive learning rates producing robust and
efficient optimization [17,19].

Momentum. This optimization algorithm accelerates the convergence of gradient descent by and SGD through
the incipient ratio of a function or the old update into the new protocol step: The optimization trajectory is smooth
and reduces oscillation, thereby making it particularly effective for navigating flat regions and saddle points in the
fast landscape. The update rule is given as:

vt+1 = γvt + η∇L(θt), θt+1 = θt − vt+1, (17)

where γ is the momentum coefficient, set to a value between 0.5 and 0.9. and vt is the velocity vector which
considers accumulates a random grid of update [28].

For the convergence analysis, the smooth and convex functions with the following convergence rates:

L(θt)− L(θ∗) ≤ L∥θ0 − θ∗∥2

2t2
, t ̸= 0

Momentum achieves a faster convergence rate of O(1/t2) compared to GD’s O(1/t) for smooth and convex
functions [37,128].

For the strong convex functions:

∥θt − θ∗∥2 ≤ (1−
√

µ

L
)t∥θ0 − θ∗∥2 (18)

⇒ O((1−
√
µ/L)t) convergence rate for convex functions [34,36].

The advantage of momentum analyses accelerated convergence [29], robustness to noise [28,37] and finally im-
proved generalization in deep learning models by avoiding sharp mining and converging to a minima.

Through its advantages over GD and SGD, it has been limitations like Stability to hyperparameters as poor
choices can lead to oscillations in divergence. Some case shows the limitations such as lack of absolute the Variants
of Momentum include the NAG, Adam and AMSGrad [19,28,31].
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Adam (Adaptive Moment Estimation). This optimization algorithm in deep learning that combines the qual-
ities of Momentum and adaptive learning rates. This is achieved by many average of both squared gradients
and gradients. Adam adapts the learning rate dynamically, which is efficient and robust for large problems in
optimization. The updates rule with parametric θt uses:

gt = ∇L(θt) (19)

where gt the gradient of the loss function L(θ) at iteration t.
Hence, the moving averages is updated with:

mt = β1mt−1 + (1− β1)gt (20)

vt = β2v
2
t−1 + (1− β2)g

2
t (21)

mt is the first moment vector (exponential moving average of gradients) and vt is the second moment vector.
β1 and β2 are decay rates for moving averages. Typically, let β1 = 0.9 and β2 = 0.99. The Bias Correction

depends on the moving averages which are initialized to zero; they are biased towards zero in the initial iterations.
Adam uses bias correction that may

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

. (22)

Then it uses the parameter update:

θt+1 = θt − η
m̂t√
v̂t + ϵ

, (23)

where ϵ is a small constant (e.g., 10−8) added to numerical stability. The rate for absorbing beams is η/
√
v0, as

ensures that the parameter is updated with step size proportional to its gradient history. Making Adam particularly
effective for ill-conditioned problem and Sparse gradient [17,19]. The convergence of Adam on L(θ), −β1, β2 and η;
the analysis and convergence of the convex and smooth functions is then: L(θ) is Convex and L-Smooth functions
with gradient gt bounded. The Adam converges to global minimum θ∗ with the following convergence rate:

E[L(θt)− L(θ∗)] ≤ D2

2ηt
+

ηG2

2(1− β1)
. (24)

This implies Adam attains a convergence rate of O(1/t) for non-convex functions [17], [19].
Adam does the following advantages: It satisfies the learning rate for each parameter based on the history of

gradients and squared gradients. High efficiency, some it combines the benefits of Momentum and adaptive learning
rates and robustness, some its is less sensitive to the choice of hyperparameters compared to SGD and momentum
along early turning.

The limitations of Adam are that it fails to converge in some cases as a result of exponential moving average of
squared gradient which can result in updates that are unstable [17,19].

2.2. AMSGrad. The Variant from Adam algorithm is an optimization algorithm structured to address convergence
issues by using the maximum of past-squared gradients instead of exponential mixing average. Here learning rates
are non-decreasing. The leads to possible convergence guarantees for non convex optimization problems.

The update rule was follows:
The gradient is given as:

gt = ∇L(θt) (25)

where gt is the gradient of the loss function L(θ) as

mt = β1mt−1 + (1− β1)gt (26)

vt = β2vt−1 + (1− β2)g
2
t (27)

Where: mt is the first Moment Vector (exponentially moving averages of gradients): vt is the second-Moment
Vector, and β1 and β2 are decay rates for the moving averages typically set to β1 = 0.9 and β2 = 0.999. This leads
to the termination of the maximum of past-Squared gradients

v̂t = max(v̂t−1, vt) (28)
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where v̂t is the max past Square gradient up to iteration t. Now making the moving averages initialized to
zero, since they are braced toward zero in the initial iterations. That is corrected by the base correction to the
first-Moment Vector

m̂t =
mt

1− βt
1

(29)

and the parameter update:

θt+1 = θt − η · m̂t√
v̂t + ϵ

(30)

Hence for the convergence analysis linear different ansatz assumption, i.e. L(θ) is convex and L-Smooth. It
seems bounded then AMSGrad converges to θ∗ as global minimum θ∗ with the following convergence rate:

E[L(θt)− L(θ∗)] ≤ D2

2ηt
+

ηG2

2(1− β1)
(31)

Where: D is the parameter space diameter. G is the gradient ∥g∥ ≤ G bound. Now, by picking ηt = D
G
√
t
,

AMSGrad achieves O(1/t) for convex and smooth functions [31,17].
For the non-Convex functions for AMSGrad: Concepts to a Stationary point where ∇L(θt) = 0, we have two

convergence rates as:

∥∇L(θk)∥2 ≤ 2(L(θ0)− L(θ∗))

ηt
+

ηG2

1− β1
(34)

⇒ O(1/
√
t) for non-Convex Functions.

The advantage of AMSGrad is possible that it is certain with provable convergence for non-convex optimization
problems by using the maximum of past squared gradients which do not allow η from increasing. Recently, it
is more robust to the choice of hyperparameters unlike Adam making the term tuning better easier, and finally
AMSGrad has shown to be better than Adam in higher scenarios. Firstly, when the loss landscape is highly noisy
or non convex.

AMSGrad has limitation, including memory overhead. For strong past squared gradients and computational cost
which may be a concern for large models.

3. Methods

(Comparative Analysis and Experimental Setup)

3.1. Comparison of Optimization Algorithms. This section provides a theoretical comparison of the optimiza-
tion algorithms discussed in this paper: GD, SGD, Momentum, Adam, and AMSGrad, based on their properties,
convergence rates, computational efficiency, and robustness.

Table 1. Theoretical Comparison of the Optimization Algorithms

Algorithm Conv. Rate (Convex) Conv. Rate (Non-Cvx) Efficiency Robustness Strengths Limitations

GD O(1/t) O(1/t) Low Sensitive Simple, deter-
ministic

Slow, expen-
sive

SGD O(1/
√
t) O(1/

√
t) High Sensitive Scalable, effi-

cient
Noisy up-
dates

Momentum O(1/t2) O(1/t2) Medium Less sensitive Fast conver-
gence

Needs tuning

Adam O(1/
√
t) O(1/

√
t) High Medium Adaptive,

efficient
May diverge

AMSGrad O(1/
√
t) O(1/

√
t) High Robust Stable, prov-

able
Memory
needed
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3.2. Empirical Comparison Using a Real-Life Dataset. To provide a comparison that is partial for the
optimization algorithms, we are evaluated their performance on the CIFAR-10 dataset, which is a widely available
benchmark in deep learning in deep learning for image classification problems. The CIFAR-10 data set consists of
60,000 32x32 color images in 10 classes with 50,000 training images and 10,000 test images.

The experimental setup included:
Model: CNN with 3 convolution layers with ReLU activation, 2 fully connected layers, Softmax Output layer, Loss
Function: Cross entropy, Batch Size: 128, Learning Rate: 0.001 for all algorithms, Momentum coefficient: 0.9 for
Adam and Momentum, Decay Rates: β1 = 0.9, β2 = 0.999 for Adam and AMSGrad and Epochs: 50.

4. Results

Table 2. Performance on Cifar-10 Dataset

Algorithm Train Acc (%) Test Acc (%) Time (s) Behavior

GD 78.5 75.2 1,200 Slow, stable
SGD 85.3 82.1 600 Noisy, moderate
Momentum 88.7 85.6 650 Fast, smooth
Adam 90.2 87.8 700 Fast, adaptive
AMSGrad 90.5 88.1 720 Stable, robust

Figure 1. Training Loss vs. Epochs for Different Optimization Algorithms
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Figure 2. Test Accuracy vs. Epochs for Different Optimization Algorithms

Figure 3. Training Time for Different Optimization Algorithms

Figure 1 compares training loss, test accuracy, and training time for different algorithms, revealing that AMSGrad
and Adam show the fastest convergence, while GD is the slowest. Figure 2 shows test accuracy improves with
AMSGrad, followed by Adam, while GD lags behind due to slower convergence. In Figure 3, the training time for
each algorithm is faster than SGD, with Momentum, Adam, and AMSGrad slightly slower than SGD.

5. Discussion

Gradient Descent (GD). GD demonstrates the lowest accuracy and the slowest training time due to its compu-
tational inefficiency. The training loss decreases at a sluggish rate, and the test accuracy plateaus early, indicating
that GD struggles to adapt efficiently to complex optimization landscapes.

Stochastic Gradient Descent (SGD). SGD improves upon GD by significantly reducing training time and
achieving better accuracy. However, due to its inherent randomness, the optimization process exhibits noisy updates,
as reflected in the fluctuations observed in both the training loss and test accuracy curves.

Momentum. Momentum further enhances SGD by accelerating convergence and improving accuracy. By incor-
porating a fraction of the previous update into the current step, Momentum smooths the optimization trajectory,
leading to a more stable decrease in training loss and a steady improvement in test accuracy.
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Adam. Among all the optimization methods analyzed, Adam achieves the highest accuracy. The use of adaptive
learning rates allows it to efficiently adjust to the loss landscape, leading to a rapid decrease in training loss and
enabling the test accuracy to reach its highest value.

AMSGrad. AMSGrad slightly outperforms Adam in terms of test accuracy, demonstrating its enhanced robustness
and stability. While its training loss and test accuracy trends are similar to Adam’s, AMSGrad exhibits reduced
fluctuations, which contributes to its improved generalization performance.

6. Conclusion

This study thoroughly examined deep learning optimization algorithms, ranging from the fundamental Gradient
Descent to the more advanced AMSGrad. We explored their theoretical characteristics and observed their real-world
effectiveness through empirical assessments. Our analysis aimed to offer insights into their design and application.
We compared key optimization algorithms used in deep learning, starting with basic Gradient Descent, which is
accurate but slow. Stochastic Gradient Descent improved on that by being faster and better for large datasets,
despite its noisiness. Adding Momentum helped make training smoother and more stable. Adam stood out as a
popular, adaptive method that balances speed and accuracy well. AMSGrad went a step further by being even
more stable and offering stronger guarantees, especially in tricky optimization settings. Overall, our work helps
people understand when and why to use each method, bridging theory with real-world use.
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