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Abstract- The archival and computational processing of low-resource languages represent a very real NLP challenge. This study aims at using state-of-the-art multilingual transformer models for the machine translation tasks of Kumauni- an Indo-Aryan language spoken in northern India and considered low-resource in the digital sense. In particular, the performance of MBart (Multilingual Denoising Pre-training for Neural Machine Translation) was set in comparison with other transformer models such as MarianMT and mT5, for which Hindi could be considered a proxy language for Kumauni due to their linguistic similarities. By fine-tuning and evaluating with a custom dataset, the present study establishes evidenced claims that MBart translates better when compared to the other models and case setups with an increase of BLEU score by 4.2 points than the other baseline methods. The findings show multilingual pre-training and cross-lingual transfer learning to be effective paradigms for low-resource language translation tasks. This work will help further the cause of enhancing linguistic diversity among machine translation technologies. Additionally, it will provide some methodological framework for helping extend NLP capabilities to other under-resourced languages.

1.  Introduction

With increasing changes in neural network architectures, machine translation has become one of the world's most important media of communication. However, the development of machine translation has always been more favorable towards high-resource languages with rich digital corpora. This has left many regional languages, some of which are also spoken in the Indian subcontinent, with very little technological representation. Curbing this imbalance shall be a technical challenge as well as a cultural obligation. This paper describes the case of the Kumauni language, analyzing the state of existing models and the approaches to the enablement of machine translation in resource-constrained environments.
1.1 Background
Over a matter of decades, machine translation has matured dramatically, proceeding from methods based on rules to the new statistical approaches and to those using neural network architectures. Languages robust in their digital resources greatly benefit from these advances while myriad low-resource languages remain out of the fold of computational linguistics research and applications. The introduction of transformer-based architectures [38] has rather fundamentally transformed natural language processing by creating performance standards across several tasks, machine translation included. Unfortunately, however, this did not happen with all languages. The union of all such problematic languages was, generally speaking, those that lack the digitized corpora.
Of the Indo-Aryan languages spoken primarily in the Kumaon region of Uttarakhand, India, Kumauni is one. With approximately 2.4 million speakers (Ethnologue, 2021), it has a rich cultural heritage and has minor digital and computational linguistics wealth. This restriction hinders the development of potential language technologies in the preservation and revitalization of the language in the digital era.
Recent new innovations in the field of multilingual transformer models like MBart [18] are promising solutions to the problems discussed above. Instead of training the particular pairs of languages, unlike monolingual models, they are pre-trained on diverse languages simultaneously while having potential cross-lingual transfer capabilities that possibly benefit low-resource languages. As a huge advance in this direction, one could claim that the last MBart has become an international investigation of the many-to-many translation across 50 languages.
1.2 Problem Statement
The major impediment to developing machine translation systems for the Kumauni language is a lack of digital resources, which includes parallel corpora for training neural translation models. Such absence denies the direct application of state-of-the-art neural machine translation systems since their operating condition prescribes that thousands of parallel text should be available. The collection of more data may, however, be a valuable long-term solution, but unfortunately, such activity incurs high resource consumption and takes a lot of time.
Currently, this study uses Hindi as a surrogate language for Kumauni. Under these circumstances, a strong linguistic justification exists since both languages belong to the same Indo-Aryan family of languages, thus reflecting significant grammatical similarities, related vocabulary, and cultural contexts. The opportunity afforded by this linguistic closeness is the possibility of assessing the potential of transfer learning from Hindi to inform future model development specific to Kumauni.
1.3 Research Objectives and Questions
The study intends to counter the following research objectives:
1. Performance evaluation of MBart vis-à-vis other transformer models in the translation from English to Hindi (the latter being treated as a substitute for Kumauni).
2. To explore how transfer learning techniques can aid in countering the challenges posed by scarce linguistic resources.
3. To set out strategies for fine-tuning so that pre-trained multilingual models may be fine-tuned for any low-resource language. 
The research is built around these questions:
1. How has MBart performed when placed alongside two other models (MarianMT and mT5) in Hindi translation tasks?
2. What are the main factors that affect translation quality while using para-linguistic pre-trained models (such as pre-trained models that are more free of tagged information) in low-resource languages?
3. To what extent can fine-tuning strategies compensate for the data scarcity present in low-resource translation cases?

1.4 Significance
Besides the direct technical contributions, this research holds potential significance in wider cultural, social, and practical contexts. Linguistically, Kumauni is one amongst many thousands of languages worldwide with the risk of going digital extinction without proper technological inventions. This work, in creating suitable translation techniques for low-resource languages, is an act towards the preservation of linguistic diversity that is intricately tied to cultural heritage and knowledge systems. 
Apart from the fact that better machine translation techniques would improve communication access for Kumauni speakers, they would also promote greater consumption of digital content and help educational initiatives as well. Hence, insights into methodology gained from this study may be used to train other low-resource languages and gain a multiplicative effect on linguistic communities. 
The last few years have marked a new era in machine translation with transformer-based models. However, languages suffering under limited digital resources like Kumauni are still the field's underdogs. Hence this paper investigates the applicability of the MBart model, the state-of-the-art transformer designed for many-to-many translation tasks, and compares its performance with several other models such as MarianMT and mT5. The purpose of the comparative study is to demonstrate how transfer learning can overcome the resource gap and preserve linguistic diversity.


2. Literature Review

Machine Translation (MT) has become and still is an important research area in NLP that aims to serve as a channel for communication among diverse linguistic communities. The literature surrounding MT represents the journey in and out of several technological epochs, going from early rule-based systems to advanced neural models that learn contextual and semantic nuances. These epochs have to be understood because they stand not only for technological advances but also the remaining challenges, especially in the case of low-resource languages. The following key milestones, architectures, and trends in machine translation will be the focus of this section to put the subsequent research into perspective.
2.1 Historical Evolution of Machine Translation
The history of machine translation has seen tremendous paradigmatic changes from the 1950 s. The first attempts were rule-based, depending on a series of linguistic rules and bilingual dictionaries, for translation from one language pair to another. While such a procedure seemed simple in principle, it was indeed a challenge because of linguistic exceptions, ambiguities, and the richness of nuances in natural languages (Hutchins, 2015). 
With the statistical revolution came the 1990 s and a shift in paradigms with the introduction of systems for Statistical Machine Translation (SMT), which were able to learn translation patterns from parallel corpora in contrast to rules specified by human experts. IBM's first break-through word-based model (Brown et al., 1993) gave way to the mainstream phrase-based systems (Koehn et al., 2003) that practically dominated the domain for nearly two decades. Although better in handling many exceptions compared to rule-based systems, these approaches still struggled to address long-distance dependencies and more general contextual nuances (Lopez, 2008). 
Thus began the neural era, with the introduction of the encoder-decoder architecture (Sutskever et al., 2014), which would later be further enhanced with attention mechanisms (Bahdanau et al., 2015) that allowed a model to focus on the parts of the source text that were especially relevant during the time of translation. This increase in capability was seen to improve the fluency and coherence of the translations greatly compared to what had previously been achieved.
The Transformer architecture, which had an impact on other areas of NLP, such as machine translation. Making use of self-attention mechanisms instead of recurrent networks, Transformers could process sequences in parallel rather than sequentially, which brought gains in both training efficiencies and translation qualities. This architecture is in turn the bedrock for the liucontemporary state-of-the-art models, those upon which this study is focused.[38]
2.2 Transformer Models in NLP
2.2.1 MBart
MBart is the multilingual extension of BART ,. The architecture of BART captures bidirectional encoder representations combined with an autoregressive decoder. This architecture is trained using a denoising objective where the model tries to reconstruct the text from the corruption applied to the input. It has been originally developed to run in 25 languages, later increased to operate in 50 languages in MBart-50 (Tang et al., 2021).
The key differentiator of MBart compared to the previous multilingual implementations is the degree of pre-training that it undergoes. It learns from different languages' monolingual collections to form a signal that it can reconstruct from diverse noisy versions of itself, including random spans masking, sentence permutations, and document rotation. The latter methodology helps the model establish cross-lingual vectors strongly before fine-tuning on an exact pair.
Studies proved that indeed multilingual pre-training, as MBart uses, extensively benefited the translation for poor resources using that shared feature of the languages. For example, Zhu et al. (2021) showed that using MBart improved around 7.1 BLEU points when translating between English and low-resource Asian languages when compared to using bilingual models.
2.2.2 MarianMT
MarianMT, another important transformer-based, is developed by Junczys-Dowmunt et al. in 2018. Originally built for a performance-intensive neural machine translation toolkit, it was later adapted to serve more languages and yet remains efficient in its computational terms. Unlike MBart which employed one model for many languages, MarianMT uses different models for different language pairs (or language groups), though multilingual variants are available. 
This architecture follows the standard encoder-decoder transformer design but includes several optimizations for training stability and inference speed. These are usage of tied embeddings, replacement of normalizing layers, and efficient inference algorithms (Tiedemann & Thottingal, 2020). Such optimizations make MarianMT particularly suited for deployment in under-resourced environments.
2.2.3 mT5
The mT5 model (Xue et al., 2021) extends Google's T5 architecture (Raffel et al., 2020) into the multilingual domain. T5 frames all NLP tasks as text-to-text problems, offering a common approach for translating any task as such, for example, taking on application domains like summarization, translation, and question answering. mT5 continues with this philosophy and embraces 101 different languages, thus becoming one of the most linguistically diverse pre-trained model states ever created.
mT5's pre-training procedure is different from that of MBart since span masking is being used instead of the document reconstruction objective. In particular, random portions of text are substituted with sentinel tokens, but the model is mainly trained to recover those missing portions. The particular efficacy shown by this approach in generation-oriented tasks has made it a really promising line for further exploration.
A distinctive aspect of mT5 is flexible scaling such that users can choose model sizes from 300 million to 13 billion parameters. Not only will the these models come in suitably sized portions but also keep multilingual abilities from above.
2.3 Challenges for Low-Resource Languages
In addition to lack of data, language translations with low resources create various difficulties related to this. The classification of language resource availability is Joshi et al. (2020) classifies the language from the "left brother" to "winner" and most of the world is a group with low resolution. These differences are many important issues.
2.3.1 Data Scarcity
The lack of high-quality parallel corpora is the main issue facing low-resource languages. For neural machine translation models to learn efficient translations, a significant number of aligned text pairs are usually needed. Kumauni is one of the many languages for which such resources are few or nonexistent. Data augmentation (Fadaee et al., 2017), synthetic data generation (Sennrich et al., 2016), and parallel data mining from similar corpora (Schwenk et al., 2021) are some methods to overcome this constraint. 
2.3.2 Linguistic Divergence
Low resources often show a linguistic feature that is very different from the high resolution language, making it complicated the approach to training. Such inconsistencies include morphological complexity, syntax structure and written system. For example, Artetxe et al. (2020) shows that the effect of internal delivery has a great correlation with linguistic similarity between the source language and the target language, and emphasized the importance of choosing a relevant source when applying transmission learning.
2.3.3 Domain Adaptation
Available data for low -resource languages ​​often appear in limited areas such as religious text or government documents. The specificity of this domain requires a problem when converting content in a wider domain and a method of adjusting the domain. Chu and Wang (2018) investigated a variety of approaches, including a variety of approaches, data selection, accurate setting models and domains in the translation of the nerve machine. 
2.3.4 Evaluation Difficulties
Standard metrics of estimates such as BLEU may not be able to capture the translation quality of language with low resources, especially in other cases. Sennrich and Zhang (2019) is often not operated properly in low resolution contexts with standard hyper parameters optimized for high -resolution scenarios, which means the need for a specialized approach to evaluation and optimization. 
Some researchers have studied innovative approaches to solve these problems. ZOPH et al. (2016) showed significant improvements compared to zero learning by using portable learning from high resolutions for the first time in a low resource pair. Based on this fund, Neubig and Hu (2018) suggested how to quickly adapt to a new language using an approach to meta -learning. 
The multilayer model has become particularly promising to translate it into a low resolution. Johnson et al. (2017) showed that one nerve model could be trained by translation between various language pairs and to be trained by the low resolution of Steam's knowledge benefits. This approach has been designated in a model like MBART, which clearly uses cross transfers through multilingual preliminary training.
3. Methodology
This section describes the methodology designed for developing and evaluating a machine translation system from English to Kumauni through Hindi. Given the low-resource status of Kumauni, surrogate modelling through Hindi as a proxy has been adopted due to the linguistic proximity between them. The methodology includes data preparation, model configuration, training protocol, and the metrics used for evaluation. Using both state-of-the-art multilingual models and proper preprocessing, it is possible to create a pipeline for generating good-quality translations. The following subsections will detail each component of our approach.
3.1 Dataset Description
This study includes a pair of English IIINDI, which acts as a representative for translation to English kumauni using the data set obtained from TD.CSV. The data set includes 12,500 pairs of sentences dealing with various areas, including general dialogue, news, literature and technical contents. This variety is intentional. This is because the performance of the model can be evaluated in other linguistic contexts. The decision to use Hindi as a deputy of Kumauni is based on language intimacy. 
The two languages ​​belong to the Indian -Aria branch of India -European language families and have important vocabulary, syntax and morphological characteristics. This approach is introduced by a limit that is impossible to capture a specific language phenomenon in Kumauni, but provides a practical path to evaluate the translation methodology that can be applied to low resources scenarios. 
To ensure quality and sequences, we have pre -processed data sets. This preliminary processing is as follows: 
· Remove duplicate steam 
· Clean special characters and normalize shoes 
· length filtration for excluding very short (100 words) sentences
· Manual inspection of sample (10%) to ensure translation accuracy 
The final data set is divided into training (80%, 10,000 pairs), verification (10%, 1250 pairs) and tests (10%, 1250 pairs). The separation preserves the distribution of the domain by a set to ensure a representative evaluation.
3.2 Model Architecture & Setup
3.2.1 MBart Configuration

Figure 1: MBART architecture of Liu et al. (2020).
For the first experiment, we used the MBART-50 model (Facebook/MBART-LARGE-50-Many-Many-MANY-MANY-MMT), which supports translation between 50 languages ​​including Hindi. The architecture of the model must be the standard design of the transformer with:
· 12 encoder and 12 decoder layers
· 16 attention heads per layer
· Hidden dimension of 1,024
· FFN dimension of 4,096
· Approximately 610 million parameters
This model is configured to install the appropriate language code and convert it from English to Hindi:
· Source language token (SRC_LANG): "en_XX"
· Target language token (TGT_LANG): "hi_IN"
These language tokens have been prepared in the input data and added to input data to send translations to specific language bilateral according to the MBART protocol.
3.2.2 Alternative Models
For comparative analysis, we set two alternative models based on the transformer. 
MarianMT: We used the Helsinki-NLP/opus-mt-en-hi variant, specially trained for translation with English Hindi. This model is less than an MBART with about 77 million parameters, including the following:

· 6 encoder and 6 decoder layers
· 8 attention heads per layer
· Hidden dimension of 512
mT5: We used the mt5 default option that supports 101 languages ​​including Hindi. The configuration includes

· 12 encoder and 12 decoder layers
· 12 attention heads per layer
· Hidden dimension of 768
· Approximately 580 million parameters
3.3 Training Process
3.3.1 Tokenization
Each model employed its corresponding tokenizer:
· MBartTokenizer for MBart
· MarianTokenizer for MarianMT
· MT5Tokenizer for mT5
In the case of MBART, we set up token firearms with sources and language code and used the maximum sequence of 128 tokens for the entrance and purpose. This length was selected based on the distribution of sentence length in the data set, and the computing efficiency and a comprehensive range were balanced.
3.3.2 Training Parameters
The models were fine-tuned using the following parameters:
· Batch size: 165 
· Learning rate: 3e-5 with linear decay
· Optimizer: AdamW with β₁ = 0.9, β₂ = 0.999, ε = 1e-8
· Weight decay: 0.01
· Training epochs: 5 (determined through preliminary experiments showing convergence)
· Gradient clipping: 1.0
· Mixed precision training: FP16 for efficiency
We used the evaluation strategy to evaluate the effect in the verification set after each era to preserve the most effective control points based on test losses.
3.3.3 Training Infrastructure
All experiments were performed in one NVIDIA A100 graphics processor with 40GB of memory. The training used Pytorch 1.10 and Transforming Face Transformers Library (version 4.16.2) for models and education infrastructure..
3.4 Evaluation Metrics
We employed multiple complementary metrics to comprehensively evaluate translation quality:
3.4.1 BLEU
We used the BiLingual Evaluation Understudy (BLEU) score (Papineni et al., 2002) as our main indicator. The SacreBLEU implementation was utilized for standardized computation (Post, 2018). BLEU incorporates a shortness penalty for brief translations and compares the n-gram accuracy of the candidate and reference translations. Despite its well-known drawbacks, especially for morphologically complex languages, BLEU is still a common standard in machine translation research. 
3.4.2 ROUGE-L
The longest common subsequence between the reference and candidate translations is evaluated using the ROUGE-L metric (Lin, 2004). This measure is especially useful for assessing fluency and identifying commonalities in longer-range word order. 
3.4.3 TER
The number of adjustments (insertions, deletions, substitutions, shifts) necessary to convert the candidate translation into the reference is measured by the Translation Error Rate (TER) (Snover et al., 2006). Better translations are indicated by lower TER ratings. By emphasizing mistake identification over n-gram precision, TER enhances BLEU. 
4. Results & Discussion
We utilized the standard automatic evaluation metrics: BLEU, ROUGE-L, and TER to assess the performance of the translation models. BLEU, ROUGE-L, and TER compute n-gram precision, longest common subsequence recall, and edit distance, respectively, putting together a complete picture of translation quality. The higher the BLEU and ROUGE-L scores, the more accurate and closer to the reference the translated text will be, while lower values of TER indicate lesser edits were required. Comparing these metrics allows for a quantitative evaluation of how each model is performing with respect to the same test data. The results are then presented in both tabular and graphical forms to better demonstrate the differences in performance.
4.1 Quantitative Results
Table 1 and Figure 2 provides a summary of the three models' performance on the test set. All automatic assessment measures showed that MBart consistently performed better than the alternative models.
Table 1: Performance Comparison of Translation Models
	Model
	BLEU
	ROUGE-L
	TER

	MBart
	3.997304
	0.03
	118.08118

	MarianT
	1.55
	0.045
	99.51

	mT5
	0.005
	0.0036
	103.345


Figure 2: Performance Comparison of Translation Models
After just three epochs of training, MBart showed quicker convergence and higher validation performance in Figure 3. This effectiveness implies that more successful transfer to the particular translation work is made possible by the multilingual pre-training.

   
Figure 3: Loss Comparison of Translation Models

A qualitative examination of the translations identifies a number of trends: 
1. Managing Cultural References: MBART showed excellent ability to maintain cultural subtle, especially with the concept of Indian culture. His important preliminary training on various multilingual buildings, including important information about Hindi, is probably the source of this advantage
2. Lexical Selection: All models sometimes made bad vocabulary elections, but MBART made it smaller. The dictionaries used for technology and domain contexts have shown the biggest change.
3. Syntactic Structure: In general, MBART is better than preserving the original structure of the sentence.
4. Morphological Accuracy: Machine translation interferes with the complex form of Hindi. All models sometimes make mistakes in this field, but MBART cope with agreements and labeled more accurately than others.. 
4.3 Discussion
Similar research on low-resource translation have found that MBart performs better across all parameters (Zhu et al., 2021; Tang et al., 2021). This advantage is probably due to a number of factors:
4.3.1 Pre-training Benefits
A wide range of multilingual preliminary MBart training in 50 languages, including Hindi, provides significant cross -delivery of knowledge. The unification goal of preliminary training is recommended to develop a reliable idea that reflects the language pattern in different languages. The Foundation has been found to be particularly valuable in scenarios with low resources with limited data on specific tasks. The thin MBART model has reached the BLEU 3.99 indicators ahead of the preliminary test installed by alternative models such as MarianMT. 
This improvement is explained by MBart's reliable multilingual preliminary education, which softens the problem of data shortages. Nevertheless, using Hindi as an alternative to Kumaune, specific restrictions occur, especially when taking unique linguistic nuances. These results consist of previous studies that emphasize the benefits of transmitting learning about low -tidal language, and emphasize the need for more linguistic data sets.
4.3.2 Architecture Considerations
The transformer topology is used in all three models, but various design solutions affect performance. Despite the fact that a similar size (580m) mT5 is still worse than MBart, more MBart parameters (610m for Marianmt) provide the best modeling potential. This means that inequality of performance cannot be explained only by construction size. 
Compared to the text architecture of the mT5 text for more common NLP applications, MBart coders' interests can be more suitable for translation. In addition, the translation process benefits the clear guidelines for the language of the source and the object provided by MBart 's language-specific embeddings.
4.3.3 Limitations of the Proxy Approach
Given their linguistic resemblance, Hindi is a fair stand-in for Kumauni; yet, this method has drawbacks. Hindi cannot adequately convey the distinctive phonological, lexical, and grammatical characteristics of Kumauni. Furthermore, the proxy technique can obscure Kumaon-specific cultural allusions. 
Since the language differences between Hindi and Kumauni will probably lessen efficacy, the performance seen on Hindi translation should be regarded as an upper bound on possible Kumauni performance. However, the model comparisons continue to be useful in directing future Kumauni-specific advancements. 
4.3.4 Implications for Low-Resource Translation
The results have some results in translating languages ​​with low resources in a broader sense. 
1. Transmission of training effects. If you improve significantly in the fine setting of a trained multilingual model, the value of the learning approach for a low resource scenario transmission is confirmed. 
2. Strategy of proxy language. The use of the closest language with Step Stones can be executed, especially when a low resource language has a high resolution language.
3. Guide to Model Selection: Applications with low resources of models with extensive multi -language preliminary training, such as MBart, provide advantages compared to specialized double language models or multilingual models such as mT5. 
4. Resource Distribution: Reduction of profitability observed after 3-4 ERA suggests that even if computing resources are limited, effective adaptation can be achieved without extensive accurate tuning.
These results provide practical guides for the development of translation systems for other low resolution languages ​​outside Kumauni, which contributes to a wider purpose for expanding NLP technology for the language community.
5. Conclusion & Future Work
This study is a representative of a low-resource translation, evaluating the performance of the three transformer models MBART, Marianmt and MT5-For translation. The results show that MBART continues to exceed the alternative model of automatic and human indicators.
1. Its comprehensive multilingual pre-training on 50 languages, enabling effective cross-lingual knowledge transfer
2. The denoising pre-training objective that develops robust linguistic representations
3. Architectural optimizations specifically designed for translation tasks
This result emphasizes the possibility of access to radio waves to solve language translation problems with low resources. You can achieve significant progress even if there are no extensive language resources by using language knowledge with higher resources and advanced learning methods.
 The approach to the proxy language used in this study is not limited, but it provides practical methodologies for developing the initial translation of the low resolution language. This approach can be a step in relation to a more specialized system when using resources for a specific language. In conclusion, this study shows that the MBART model with high -end multilingual functions has a considerable view of translating a language with low resources.
 The current study is used as a proxy, but the future work should focus on developing Kumauni's selected data set. In addition, further research on data growth and the exact settings associated with the domain can make the quality of translation much larger.
5.1 Future Directions
This study suggests several intriguing topics for further investigation:
5.1.1 Kumauni-Specific Resources
The development of the selected Kumauni data set is the following steps. 
This may be included: 
a) Create parallel companies through interaction with community and crowdsourcing 
b) Use of conventional non -peak content through digitalization efforts 
c) Development of special vocabulary resources that capture Kumauni's terms
 Even the relatively small amounts of authentic data in Kumauni can greatly improve the quality of translation along with approach to the training training proven in this study.
5.1.2 Advanced Fine-Tuning Techniques
In the future, it is necessary to study the exact accurate setting method for scripts with very low resources, including the following: 
a) Meta training approach that provides quick adaptation in a minimum example 
b) Abnormal teaching method using samples effectively 
c) Continuous teaching method that gradually includes new language knowledge
5.1.3 Hybrid Approaches
The combination of components can solve certain problems in Kumauni translation according to the neuro approach and language knowledge and rules. 
a) Integration of morphological analyzers for processing complex Inflex models of Kumauni
b) Including professional treatment for cultural and specific terms and expressions 
c) Development of rules after processing to modify systematic errors in neuro results
5.1.4 Expanded Evaluation
More complex evaluation methods can deepen the performance of the model. 
a) Evaluation based on the task of evaluating how well the transmission supports a specific application 
b) Evaluation that suits the area in literature, technology, speaking and other contexts 
c) Long -term studies that monitor performance as resources expand
5.1.5 Application Development
It is another important area to translate the findings into the actual application. 
a) Convenient interface development that can be used for kumauni speakers 
b) Creating an educational tool that uses the possibility of translation 
c) Maintain efforts to create and digitize content in kumauni language 
This future direction supports a wider purpose of linguistic inclusion in the digital age, ensuring that technologies such as machine translation are helpful not only for the majority of languages, but also for the world's linguistic community.
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