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Abstract: In this paper, a competition-cooperation enterprise cluster model with

delays is studied. The oscillatory behavior of the solutions is investigated. We extend the

result in the literature from a mathematical point of view. Make the change of variables

and deal with the instability of linearized system. The boundedness of the solutions

of the system and the instability of the unique positive equilibrium point will force the

system to generate a periodic solutionaround the equilibrium. Two sufficient conditions to

guarantee the periodic oscillation of the solutions are provided based on the instability of

the equilibrium point, and computer simulations are given to support the present criteria.
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1 Introduction

Recently, many researchers have studied various competition-cooperation enterprise mod-

els. For example, Liao et al. [1,2] proposed the following delayed differential equation

model of the form:
x′1(t) = r1x1(t)(1− x1(t−τ1)

K1
− α(x2(t−τ2)−c2)2

K2
,

x′2(t) = r2x2(t)(1− x2(t−τ1)
K2

+ β(x1(t−τ2)−c1)2

K1
),

x1(t) = ψ(t), x2(t) = ϕ(t), t ∈ [−max{τ1, τ2}, 0],

(1)

where the variables x1(t) and x2(t) denote the output of two enterprises, respectively;

r1 and r2 represent the intrinsic growth rates of two enterprises; K1 and K2 are the
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natural market carrying capacity of two enterprises; α is the consumption coefficient of

the enterprise with the output x2(t) to the one with the output x1(t) and β denotes the

transformation coefficient of the enterprise with the output x1(t) to the one with the

output x2(t). The existence of bifurcation periodic solutions of the model (1) was studied

by choosing τ1 or τ2 as the bifurcation parameter. Sirghi et al. extended model (1)

into distributed delay system [3]. The authors obtained some conditions that the positive

equilibrium point of system lossed the stability and induce various oscillations and periodic

solutions. Muhammadhaji and Nureji [4] studied the competition and cooperation model

of enterprises with variable coefficients in system (1) as follows: y′1(t) = y1(t)[c1(t)− b11(t)y1(t− τ1)− b12(t)(y2(t− τ2)− d2(t))
2],

y′2(t) = y2(t)[c2(t)− b21(t)y2(t− τ2)− b22(t)(y1(t− τ1)− d1(t))
2].

(2)

A criteria on the periodic solution, extinction, permanence and global attractiveness of the

model was obtained by employing the Lyapunov method and the comparison principle.

Xu and Shao [5] discussed the periodic solution and global attractivity of model (2) with

impulses. Muhammadhaji and Maimaiti [6] studied a non-autonomous competition and

cooperation model of two enterprises with discrete feedback controls and constant delays.

In [7], the authors considered the following model:

u′1(t) = u1(t)[r1(t)− α1(t)u1(t)− β1(t)(u2(t)− σ2(t))
2 − a1(t)v1(t− η1(t))],

v′1(t) = −δ1(t)v1(t) + q1(t)u1(t− ζ1(t)),

u′2(t) = u2(t)[r2(t)− α2(t)u2(t)− β2(t)(u1(t)− σ1(t))
2 − a2(t)v2(t− η2(t))],

v′2(t) = −δ2(t)v2(t) + q2(t)u2(t− ζ2(t)).

(3)

Some new results on competition and cooperation model of two enterprises with multiple

delays and feedback controls were obtained. Lu et al. [8] studied dynamic properties

for a discrete competition model with multiple delays and feedback controls. Guerrini

discussed the effect of small delays in a competition and cooperation model of enterprises

[9]. Xu and Li [10] considered almost periodic solution problems for two enterprises with

time-varying delays and feedback controls. Based on periodic time scales theory and the

fixed point theorem of strict-set-contraction, Peng et al. discussed a class of enterprise

cluster models with feedback controls and time-varying delays on time scales. Some new

sufficient conditions for the existence of positive periodic solutions are obtained [11]. Ren

et al. discussed the role of gradient learning on the convergence of output dynamics in

the duopoly competition model under incomplete information [12,13]. For a model of
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competition and cooperation between two enterprises with reaction, diffusion, and delays,

the stability and Hopf bifurcation for variants with delays were considered by examining

a system of delay equations analytically and numerically [14, 15]. In [16], the authors

investigated the following delayed competitive-cooperative systems:
z′1(t) = z1(t)[r1(t)− a111(t)z1(t− τ)− a112(t)z1(t− 2τ)− a12(t)z2(t− 2τ) + a13(t)z3(t− τ)],

z′2(t) = z2(t)[r2(t)− a21(t)z1(t− 2τ)− a122(t)z2(t− τ)− a222(t)z2(t− 2τ) + a23(t)z3(t− τ)],

z′3(t) = z3(t)[r3(t) + a31(t)z1(t− τ) + a32(t)z2(t− τ)− a133(t)z3(t)− a233(t)z3(t− τ)].

(4)

Some sufficient conditions to ensure the permanent and globally attractive of the system

(4) were provided. Guo et al. discussed a three-dimensional competition system in shifting

environments, and the existence of forced waves for diffusive competition systems was

derived [17-20]. For other effects of cluster systems, one can see [21-22]. In [23], the

authors investigated the following competition-cooperation enterprise cluster model with

one core enterprise and two satellite enterprises:
x′1(t) = x1(t)[r1 − a1x1(t)− b1x2(t)− c1(y(t− τ)− d)2)],

x′2(t) = x2(t)[r2 − a2x2(t)− b2x1(t)− c1(y(t− τ)− d)2)],

y′(t) = y(t)[r3 − a3y(t) + c2((x1(t− τ)− d1)
2 + (x2(t− τ)− d2)

2)].

(5)

The upper bounds of both core enterprise and satellite enterprise outputs were provided.

By selecting τ as the bifurcating parameter, the conditions of local stability and Hopf

bifurcation were discussed. In this paper, we extend models (1) and (6) to the follow-

ing competition-cooperation enterprise cluster model with two core enterprises and two

satellite enterprises and multiple delays system:

x′1(t) = x1(t)[r1 − a1x1(t)− b1x2(t− τ2)− c1(y1(t− τ3)− d3)
2 − c2(y2(t− τ4)− d4)

2)],

x′2(t) = x2(t)[r2 − a2x2(t)− b2x1(t− τ1)− c2(y1(t− τ3)− d3)
2 − c1(y2(t− τ4)− d4)

2)],

y′1(t) = y1(t)[r3 − a3y1(t)− b3y2(t− τ4) + c3(x1(t− τ1)− d1)
2 + c4(x2(t− τ2)− d2)

2)],

y′2(t) = y2(t)[r4 − a4y2(t)− b4y1(t− τ3) + c4(x1(t− τ1)− d1)
2 + c3(x2(t− τ2)− d2)

2)],

xi(t) = ϕi(t), yi(t) = ψi(t), t ∈ [−max{τ1, · · · , τ4}, 0],
(6)

where all the parameter values are positive real numbers. xi(t), yi(t)(i = 1, 2) are the

outputs of satellite enterprises and core enterprises, respectively, ri are the intrinsic growth

rates, ai are the self-regulations of enterprises, bi are the competition rates of enterprises,

c1 and c2 are the competition rates between satellite enterprises and core enterprises, c3
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and c4 are the rates of conversion of commodity into the reproduction of enterprises, di

are initial outputs of enterprises. Our goal is to investigate the periodic oscillation of the

system (6). We believe that the general bifurcating method is a tool to deal with this

system. However, it is pointed out that if time delays are different from real numbers, the

bifurcating method is not easy to determine the existence of bifurcation periodic solution

due to the complexity of bifurcation equations. In the present paper, we will use the

mathematical analysis method to study the existence of oscillatory solutions of the system

(6).

2 Preliminaries

Obviously, (0, 0, 0, 0)T is a trivial equilibrium point of the system (6). However, we

shall be concerned with the non-trivial positive equilibrium point. Since ri(i = 1, · · · , 4)

are positive real numbers, there exists a positive equilibrium point of system (6), say

(x∗1, x
∗
2, y

∗
1, y

∗
2)

T . Then make the change of variables xi(t) → xi(t) − x∗i , yi(t) → yi(t) −

y∗i , (i = 1, 2), noting that

r1 − a1x
∗
1 − b1x

∗
2 − c1(y

∗
1 − d3)

2 − c2(y
∗
2 − d4)

2 = 0,

r2 − a2x
∗
2 − b2x

∗
1 − c2(y

∗
1 − d3)

2 − c1(y
∗
2 − d4)

2 = 0,

r3 − a3y
∗
1 − b3y

∗
2 + c3(x

∗
1 − d1)

2 + c4(x
∗
2 − d2)

2 = 0,

r4 − a4y
∗
2 − b4y

∗
1 + c4(x

∗
1 − d1)

2 + c3(x
∗
2 − d2)

2 = 0,

(7)
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We have

x′1(t) = −a1x∗1x1(t)− b1x
∗
1x2(t− τ2)− 2c1x

∗
1(y

∗
1 − d3)y1(t− τ3)− 2c2x

∗
1(y

∗
2 − d4)y2(t− τ4)

−a1x21(t)− b1x1(t)x2(t)− c1x1(t)y
2
1(t− τ3)− 2c1(y

∗
1 − d3)x1(t)y1(t− τ3)

−c2x1(t)y22(t− τ4)− 2c2(y
∗
2 − d4)x1(t)y2(t− τ4)− c1x

∗
1y

2
1(t− τ3)− c2x

∗
1y

2
2(t− τ4),

x′2(t) = −a2x∗2x2(t)− b2x
∗
2x1(t− τ1)− 2c2x

∗
2(y

∗
1 − d3)y1(t− τ3)− 2c1x

∗
2(y

∗
2 − d4)y2(t− τ4)

−a2x22(t)− b2x1(t− τ1)x2(t)− c2x2(t)y
2
1(t− τ3)− 2c2(y

∗
1 − d3)x2(t)y1(t− τ3)

−c1x2(t)y22(t− τ4)− 2c1(y
∗
2 − d4)x2(t)y2(t− τ4)− c2x

∗
2y

2
1(t− τ3)− c1x

∗
2y

2
2(t− τ4),

y′1(t) = −a3y∗1y1(t)− b3y
∗
1y2(t− τ4) + 2c3y

∗
1(x

∗
1 − d1)x1(t− τ1) + 2c4y

∗
1(x

∗
2 − d2)x2(t− τ2)

−a3y21(t)− b3y1(t)y2(t− τ4) + c3y1(t)x
2
1(t− τ1) + c4y1(t)x

2
2(t− τ2)

+2c3(x
∗
1 − d1)y1(t)x1(t− τ4) + 2c4(x

∗
2 − d2)y1(t)x2(t− τ2) + c3y

∗
1x

2
1(t− τ1) + c4y

∗
1x

2
2(t− τ2),

y′2(t) = −a4y∗2y2(t)− b4y
∗
2y1(t− τ1) + 2c4y

∗
2(x

∗
1 − d1)x1(t− τ1) + 2c3y

∗
2(x

∗
2 − d2)x2(t− τ2)

−a4y22(t)− b4y2(t)y1(t− τ3) + c4y2(t)x
2
1(t− τ1) + c3y2(t)x

2
2(t− τ2)

+2c4(x
∗
1 − d1)y2(t)x1(t− τ4) + 2c3(x

∗
2 − d2)y2(t)x2(t− τ2) + c4y

∗
2x

2
1(t− τ1) + c3y

∗
2x

2
2(t− τ2),

(8)

System (8) can be expressed in the following matrix form:

u′(t) = Au(t) +Bu(t− τ) + f(u(t), u(t− τ)), (9)

where u(t) = [x1(t), x2(t), y1(t), y2(t)]
T , u(t− τ) = [x1(t− τ1), x2(t− τ2), y1(t− τ4), y2(t−

τ4)]
T , A and B both are 4 × 4 matrices, and f(u(t), u(t − τ)) is a four by one vector:

f(u(t), u(t−τ)) = [−a1x21(t)−b1x1(t)x2(t)−c1x1(t)y21(t−τ3) · · ·−c1x∗1y21(t−τ3)−c2x∗1y22(t−

τ4), · · · − a4y
2
2(t)− b4y2(t)y1(t− τ3) · · · c4y∗2x21(t− τ1) + c3y

∗
2x

2
2(t− τ2)]

T ,

A = diag(a11, a22, a33, a44) = diag(−a1x∗1,−a2x∗2,−a3y∗1,−a4y∗2),

B = (bij)4×4 =


0 b12 b13 b13

b21 0 b23 b24

b31 b32 0 b34

b41 b42 b43 0

 ,

where b12 = −b1x∗1, b13 = −2c1x
∗
1(y

∗
1 − d3), b14 = −2c2x

∗
1(y

∗
2 − d4), b21 = −b2x∗2, b23 =

−2c2x
∗
2(y

∗
1 − d3), b24 = −2c1x

∗
2(y

∗
2 − d4), b31 = 2c3y

∗
1(x

∗
1 − d1), b32 = 2c4y

∗
1(x

∗
2 − d2), b34 =

−b3y∗1, b41 = 2c4y
∗
2(x

∗
1 − d1), b42 = 2c3y

∗
2(x

∗
2 − d2), b43 = −b4y∗2. The linearized system of

(9) is

u′(t) = Au(t) +Bu(t− τ) (10)
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Lemma 1 If matrix M = A + B is a nonsingular matrix for selected parameters, then

there exists a unique positive equilibrium point for system (6).

Proof To prove that there exists a unique positive equilibrium point for system (6), we

only need to prove that system (10) has a unique trivial equilibrium point. Assume that

u∗ = (x∗1, x
∗
2, y

∗
1, y

∗
2)

T is an equilibrium point of the system (10), then we have the following

algebraic equations:

(A+B)u∗ =Mu∗ = 0 (11)

According to the basic linear algebraic knowledge, system (11) has a unique solution since

M = A + B is a nonsingular matrix. This unique solution exactly is the trivial solution.

Noting that f(0) = 0. Therefore, system (8) (or (9)) has a unique trivial solution, implying

that system (6) has a unique positive equilibrium point.

Lemma 2 All solutions of system (6) are bounded.

Proof Noting that all parameter values are positive real number. Thus, from (6) we have x′1(t) ≤ x1(t)[r1 − a1x1(t)− b1x2(t− τ2)],

x′2(t) ≤ x2(t)[r2 − a2x2(t)− b2x1(t− τ1)].
(12)

To prove the boundedness of the positive solutions in the system (12), consider a Lyapunov

function V (t) = 1
2(x

2
1(t) + x22(t)). Then we get

V (t)′|(12) = x1(t)x
′
1(t) + x2(t)x

′
2(t) (13)

≤ −a1x31(t)− a2x
3
2(t)− b1x

2
1(t)x2(t− τ2)

−b2x22(t)x1(t− τ1) + r1x
2
1(t) + r2x

2
2(t)

Noting that x31(t), x
3
2(t) are higher order infinity than x21(t), x

2
2(t) as x1 → ∞, x2 → ∞.

Since ai > 0, bi > 0(i = 1, 2), so, there exists suitably large N > 0 such that V (t)′|(12) < 0

as x1(t) > N and x2(t) > N . This means that x1(t), x2(t) are bounded, say x1(t) ≤

M1, x2(t) ≤M2. From (6) we have y′1(t) ≤ y1(t)[(r3 + c3M
2
1 + c4M

2
2 )− a3y1(t)− b3y2(t− τ4)],

y′2(t) ≤ y2(t)[(r4 + c4M
2
1 + c3M

2
2 )− a4y2(t)− b4y1(t− τ3)].

(14)

By constructing a Lyapunov function V (t) = 1
2(y

2
1(t) + y22(t)), one can prove that both

of y1(t) and y2(t) are bounded in system (14). Thus, all solutions of the system (6) are

bounded.
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3 The existence of periodic oscillatory solutions

Theorem 1 Assume that the system (6) has a unique positive equilibrium point. Let

β1, β2, β2, β4 be characteristic values of matrix B. If there is some βi, say β1, such that

Re(β1) > |a11| = a1x
∗
1, then the unique positive equilibrium point of system (6) is unstable,

implying that there exists an oscillatory solution in system (6).

Proof Noting that the nonlinear term f(u(t), u(t− τ)) of the system (9) is a higher order

infinitesimal as ui → u∗i . Obviously, if the trivial solution of system (10) is unstable,

then the unique positive equilibrium point of system (6) is also unstable. Therefore, to

discuss the instability of the positive equilibrium point of the system (6), we only need to

deal with the instability of the trivial solution of the system (10). Since β1, β2, β2, β4 are

characteristic values of matrix B, then the characteristic equations corresponding to the

system (10) are the following:

Π4
i=1(λ− aii − βie

−λτi) = 0. (15)

Thus, we are led to investigate the nature of the roots for the following equation

λ− a11 − β1e
−λτ1 = 0. (16)

Noting that equation (16) is a transcendental equation, it is hard to find all solutions for

the equation. However, we show that there exists a positive real part eigenvalue of the

equation (16) under the assumptions of Theorem 1. Indeed, if Re(β1) > |a11| = a1x
∗
1,

setting λ = σ + iω, β1 = β11 + iβ12, σ = Re(λ), ω = Im(λ), β11 = Re(β1), β12 = Im(β1).

Separating the real part and imaginary part of the equation (16) we get

σ = a11 + β11e
−στ1 cos(ωτ1)− β12e

−στ1 sin(ωτ1) (17)

We show that the equation (17) has a positive root. Let

ϕ(σ) = σ − a11 − β11e
−στ1 cos(ωτ1) + β12e

−στ1 sin(ωτ1) (18)

Obviously, ϕ(σ) is a continuous function of σ. Noting that β11 > |a11|, then ϕ(0) =

−a11 − β11 cos(ωτ1) + β12 sin(ωτ1) ≤ −a11 − β11 < 0. as ωτ1 ∼ 2nπ, where n is an integer

number. Since limσ→+∞ e−στ1 = 0, so there exists a suitably large σ, say σ1(> 0) such

that ϕ(σ1) = σ1 − a11 − β11e
−σ1τ1 cos(ωτ1) + β12e

−σ1τ1 sin(ωτ1) > 0. By the Intermediate

Value Theorem, there exists a σ, say σ0 ∈ (0, σ1) such that ϕ(σ0) = 0, implying that there

is a positive real part characteristic value of equation (16). This means that the trivial
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solution of system (10) is unstable, implying that the trivial solution of system (8) is

unstable. It suggests that the unique positive equilibrium point (x∗1, x
∗
2, y

∗
1, y

∗
2)

T of system

(6) is unstable. This instability of the unique positive equilibrium point together with the

boundedness of the solutions will force system (6) to generate a limit circle, namely, there

is a periodic oscillatory solution [24, 25]. The proof is completed.

Now set a = min1≤i≤4 |aii|, b = maxj
∑4

i=1 |bij |. Then we have

Theorem 2 Assume that the conditions of Lemma 1 and Lemma 2 hold. If the following

inequality holds:

−a+ b > 0. (19)

Then the unique positive equilibrium point of system (6) is unstable, implying that system

(6) generates a periodic oscillatory solution.

Proof Noting that |v(t)| = v(t) as v(t) > 0, and |v(t)| = −v(t) as v(t) < 0. So from (10)

we have

d|x1(t)|
dt ≤ −a1x∗1|x1(t)|+ |b1x∗1||x2(t− τ2)|+ |2c1x∗1(y∗1 − d3)||y1(t− τ3)|

+|2c2x∗1(y∗2 − d4)||y2(t− τ4)|,
d|x2(t)|

dt ≤ −a2x∗2|x2(t)|+ |b2x∗2||x1(t− τ1)|+ |2c2x∗2(y∗1 − d3)||y1(t− τ3)|

+|2c1x∗2(y∗2 − d4)||y2(t− τ4)|,
d|y1(t)|

dt ≤ −a3y∗1|y1(t)|+ |b3y∗1||y2(t− τ4)|+ |2c3y∗1(x∗1 − d1)||x1(t− τ1)|

+|2c4y∗1(x∗2 − d2)||x2(t− τ2)|,
d|y2(t)|

dt ≤ −a4y∗2|y2(t)|+ |b4y∗2||y1(t− τ1)|+ |2c4y∗2(x∗1 − d1)||x1(t− τ1)|

+|2c3y∗2(x∗2 − d2)||x2(t− τ2)|.

(20)

Let z(t) =
∑2

i=1(|xi(t)|+ |yi(t)|). From (20) we have

dz(t)

dt
≤ −az(t) + bz(t− τ) (21)

Consider a scalar delayed differential equation

dw(t)

dt
= −aw(t) + bw(t− τ) (22)

Obviously, we have z(t) ≤ w(t). We prove that the trivial solution of (22) is unstable.

Indeed, the characteristic equation associated with the equation (22) is the following

λ = −a+ be−λτ (23)

Similar to Theorem 1, consider a function ψ(λ) = λ+ a− be−λτ . Then ψ(0) = a− b < 0

since −a + b > 0. There exists a suitably large λ, say λ1(> 0) such that ψ(λ1) =
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λ1 + a − be−λ1τ > 0. So there exists a λ, say λ0 ∈ (0, λ1) such that ψ(λ0) = 0, implying

that there is a positive real part characteristic value of equation (22). This means that the

trivial solution of system (10) is unstable. It suggests that the unique positive equilibrium

point (x∗1, x
∗
2, y

∗
1, y

∗
2)

T of system (6) is unstable, and system (6) has an oscillatory solution.

4 Simulation result

This simulation is based on the system (6). Firstly, the parameters are selected as the

following: r1 = 0.78, r2 = 0.86, r3 = 0.82, r4 = 0.84, a1 = 0.75, a2 = 0.76, a3 = 0.94, a4 =

0.98, b1 = 0.65, b2 = 0.64, b3 = 0.58, b4 = 0.52, c1 = 0.12, c2 = 0.05, c3 = 3.85, c4 =

3.65, d1 = 0.25, d2 = 0.28, d3 = 0.22, d4 = 0.24. Then the unique positive equilibrium point

is (0.2328, 0.7504, 0.9912, 1.2011)T . Therefore, matrix A=diag(−0.1746,−0.5703,−0.9315,

− 1.1772), b12 = −0.1513, b13 = −0.0431, b14 = −0.0223, b21 = −0.4803, b23 = −0.0578,

b24 = −0.1728, b31 = −0.1526, b32 = 1.4273, b34 = −0.5749, b41 = −0.1754, b42 = 4.3368,

b43 = −0.6243. The characteristic values of matrix B are 0.3211± 0.1265i,

− 0.3211 ± 0.7617i. Noting that 0.3211 > 0.2328, the conditions of Theorem 1 are sat-

isfied. When time delays are selected as τ1 = 2.75, τ2 = 2.82, τ3 = 2.78, τ4 = 2.72,

and τ1 = 3.15, τ2 = 3.22, τ3 = 3.18, τ4 = 3.12, respectively, there exists an oscilla-

tory solution for the system (6) (see Fig.1). Then we select parameter values as r1 =

0.85, r2 = 0.86, r3 = 0.70, r4 = 0.72, a1 = 0.85, a2 = 0.86, a3 = 0.98, a4 = 0.92, b1 =

0.65, b2 = 0.56, b3 = 0.68, b4 = 0.52, c1 = 0.24, c2 = 0.046, c3 = 3.78, c4 = 3.72, d1 =

0.45, d2 = 0.16, d3 = 0.42, d4 = 0.84. Thus, the unique positive equilibrium point is

(0.3294, 0.6639, 0.7018, 1.4882)T . Therefore, matrix A=diag(−0.2801,−0.5711,−0.6878,

− 1.3691), b12 = −0.2141, b13 = −0.0446, b14 = −0.0185, b21 = −0.3696, b23 = −0.0171,

b24 = −0.1981, b31 = −0.6441, b32 = 3.7944, b34 = −0.4828, b41 = −1.2928, b42 = 5.4734, b43 =

−0.7531. Therefore, a = 0.2801, b = 9.0537, and −0.2801 + 9.0537 > 0. The conditions

of Theorem 2 are satisfied. When time delays are selected as τ1 = 4.35, τ2 = 4.25, τ3 =

4.38, τ4 = 4.15, and τ1 = 4.75, τ2 = 4.65, τ3 = 4.78, τ4 = 4.55, respectively, there exists

an oscillatory solution for the system (6) (see Fig.2). In figure 3, we only change the

values of ci(i = 1, · · · , 4), the other parameter values are the same as in figure 2. Fi-

naly, the parameter values are selected as r1 = 0.84, r2 = 0.76, r3 = 0.80, r4 = 0.82, a1 =

0.85, a2 = 0.86, a3 = 0.98, a4 = 0.92, b1 = 0.45, b2 = 0.36, b3 = 0.48, b4 = 0.32, c1 =

9



0.12, c2 = 0.08, c3 = 3.25, c4 = 2.65, d1 = 0.15, d2 = 0.18, d3 = 0.12, d4 = 0.14. Then

the unique positive equilibrium point is (0.5616, 0.4155, 0.9133, 1.2586)T . Therefore, ma-

trix A=diag(−0.4774,−0.3573,−0.8951,−1.1579) b12 = −0.2527, b13 = −0.1078, b14 =

−0.1792, b21 = −0.1496, b23 = −0.0532, b24 = −0.1117, b31 = 2.6714, b32 = 1.1617, b34 =

−0.4384, b41 = 2.8016, b42 = 1.9656, b43 = −0.4028. The characteristic values of matrix B

are 0.3877, 0.1956,−0.2916 ± 1.0182i. Noting that 0.3877 > 0.3573, −a = −0.3573, b =

5.4730, and −a + b = −0.3573 + 5.4730 > 0. Both of the conditions of Theorem 1 and

Theorem 2 are satisfied. When time delays are selected as τ1 = 2.75, τ2 = 2.65, τ3 =

2.78, τ4 = 2.62, and τ1 = 3.25, τ2 = 3.15, τ3 = 3.28, τ4 = 3.12, respectively, there exists an

oscillatory solution for the system (6) (see Fig.4).

5 Conclusion

In this paper, we have discussed the oscillatory behavior of the solutions for a cluster

model with two core enterprises and two satellite enterprises. Based on the method of

mathematical analysis, we provided two theorems to guarantee the oscillation of the solu-

tions. Some simulations are provided to indicate the effectiveness of the criteria. From the

simulation we see that the oscillatory frequency of the two core enterprises and the two

satellite enterprises almost the same, respectively, The amplitude of the core enterprises

is greater than the satellite enterprises. It is tally with the actual situations.

Competing Interests

The author has declared that no competing interests exist.

References

[1] M. Liao, C. Xu, X. Tang, Dynamical behaviors for a competition and cooperation model of

enterprises with two delays, Nonlinear Dyn, 75 (2014), 257-266.

[2] M. Liao, C. Xu, X. Tang, Stability and Hopf bifurcation for a competition and cooperation

model of two enterprises with delay, Commun. Nonlinear Sci. Numer. Simul., 19 (2014),

3845-3856.

[3] N. Sirghi, M. Neamtu, L.M. Cismas, , The analysis of a competition and cooperation model of

two enterprises with distributed time delay, Proceedings of International Conference “Current

Economic Trends in Emerging and Developing Countries”ISBN 978-973-52-1565-1, Mirton

Timisoara 2015.

10



[4] A. Muhammadhaji, M. Nureji, Dynamical behavior of competition and cooperation dynamical

model of two enterprises, J. Quant. Econ., 36 (2019), 94–98.

[5] C.J. Xu, Y.F. Shao, Existence and global attractivity of periodic solution for enterprise clusters

based on ecology theory with impulse, J. Appl. Math. Comput. , 39 (2012), 367–384.

[6] A. Muhammadhaji, Y. Maimaiti, New criteria for analyzing the permanence, peri-

odic solution, and global attractiveness of the competition and cooperation model

of two enterprises with feedback controls and delays, Mathematics, 11 (2023), 4442.

https://doi.org/10.3390/math11214442,

[7] C.J. Xu, P.L. Li, Q.M. Xiao, S. Yuan, New results on competition and cooperation model of

two enterprises with multiple delays and feedback controls, Boundary Value Problems 2019

(2019):36.

[8] L. Lu, Y. Lian, C. Li, Dynamics for a discrete competition and cooperation model of two

enterprises with multiple delays and feedback controls, Open Math., 15 (2017), 218–232.

[9] L. Guerrini, Small delays in a competition and cooperation model of enterprises, Appl. Math.

Sci., 10 (2016), 2571–2574.

[10] C. Xu, P. Li, Almost periodic solutions for a competition and cooperation model of two

enterprises with time-varying delays and feedback controls, J. Appl. Math. Comput., 53

(2017), 397–411.

[11] C. Peng, X.L. Li, B. Du, Positive periodic solution for enterprise cluster model with feedback

controls and time-varying delays on time scales, AIMS Mathematics, 9(3) (2024), 6321–6335.

[12] J. Ren, H. Sun, G.J. Xu, D.S. Hou, Convergence of output dynamics in duopoly co-opetition

model with incomplete information, Math. Comput. Simul., 207 (2023), 209-225.

[13] J. Ren, H. Sun, G.J. Xu, D.S. Hou, Prediction on the competitive outcome of an enterprise

under the adjustment mechanism, Appl. Math. Comput., 372 (2020), 124969.

[14] H.Y. Alfifi, Effects of diffusion and delays on the dynamic behavior of a competition and coop-

eration model, MDPI: Mathematics 13 (2025), 1026; https://doi.org/10.3390/math13071026.

[15] H.Y. Alfifi, S.M. Almuaddi, Stability analysis and hopf bifurcation for the Brusselator reac-

tion—Diffusion system with gene expression time delay, MDPI: Mathematics 12 (2024), 1170;

https://doi.org/10.3390/math12081170.

[16] A. Muhammadhaji, Z. Teng, M. Rahim, Dynamical behavior for a class of delayed competitive-

mutualism systems, Differ. Equ. Dyn. Syst. 23 (2015), 281–301.

11



[17] J.S. Guo, K.R. Guo, M. Shimojo, Forced waves for diffusive competition systems in shifting

environments, Nonlinear Analysis: RWA, 73 (2023), 103880.

[18] Y.S. Chen, J.S. Guo, Traveling wave solutions for a three-species predator–prey model with

two aborigine preys, Jpn. J. Ind. Appl. Math., 38 (2021), 455-471.

[19] X.S. Li, S.X. Pan, Traveling wave solutions of a delayed cooperative system, MDPI: Mathe-

matics, 7 (2019), 269; https://doi.org/10.3390/math7030269.

[20] Z.Z. Wei, X. Zhang, Dynamics of a diffusive delayed competition and cooperation system,

Open Math., 18 (2020), 1230–1249.

[21] T. Konig, Between collaboration and competition: co-located clusters of different industries

in one region-the context of Tuttlingen’s medical engineering and metal processing industries,

Reg. Sci. Poli. Prac., 15 (2023), 288-236.

[22] S. Zeng, J. Bao, Analysis of the effects of digital transformation of enterprise clusters on

innovation performance in the context of “Internet+”, Syst. Soft Comput., 7 (2025), 200270.

[23] W.J. Hu, T. Dong, H. Zhao, Dynamic analysis of a competition-cooperation enterprise cluster

with core-satellite structure and time delay, Complexity, 2021 Article ID 6644292.

[24] N. Chafee, A bifurcation problem for a functional differential equation of finite retarded type,

J. Math. Anal. Appl., 35:312-348, 1971.

[25] C. Feng, R. Plamondon, An oscillatory criterion for a time delayed neural network model,

Neural Networks, 29:70-79, 2012.

12



0 20 40 60 80 100 120 140 160 180 200

Delays: 2.75, 2.82, 2.78, 2.72.

0

1

2

3

4

Solid line: x1(t), dashed line: x2(t), dotted line: y1(t), dashdotted line: y2(t).

0 20 40 60 80 100 120 140 160 180 200

Delays: 3.15, 3.22, 3.18, 3.12.

0

1

2

3

4

(a) Fig. 1. Oscillation of the solutions.
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(b) Fig.2. Oscillation of the solutions.
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(a) Fig.3. Oscillation of the solutions.
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(b) Fig.4. Oscillation of the solutions.
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