
SOME IMPORTANT CHARACTERIZATIONS ACCORDING TO
THE TACHIBANA OPERATOR FOR INVARIANT

SUBMANIFOLDS OF A LORENTZIAN �-KENMOTSU
MANIFOLD

Abstract. In this study, invariant submanifolds of a Lorentzian �-Kenmotsu
Manifold have been studied. Invariant submanifolds of Lorentzian �-Kenmotsu
manifolds are discussed by using the Tachibana operator. Some important
characterizations of Lorentzian �-Kenmotsu manifolds have been obtained un-
der some special conditions with the help of the Tachibian operator.

1. Introduction

Lorentzian geometry has signi�cant applications, particularly in the �elds of
general relativity and theoretical physics. Kenmotsu manifolds constitute an im-
portant class of contact geometry and stand out in di¤erential geometry research
due to their distinct structural properties. �-Kenmotsu manifolds, which are gen-
eralizations of Kenmotsu manifolds, o¤er a broader class characterized by a certain
structural function, such as a �-function. This structure provides a more �exible
framework compared to classical Kenmotsu manifolds.
The Lorentzian metric introduces a temporal and spatial distinction to mani-

folds, enabling physical interpretations. Hence, Lorentzian �-Kenmotsu manifolds
o¤er a rich �eld of study both geometrically and physically. Although various
studies have been conducted on Lorentzian Kenmotsu and �-Kenmotsu structures,
their submanifolds, curvature properties, and applications remain open to further
investigation.
Submanifolds are fundamental structures in di¤erential geometry and have sig-

ni�cant applications in various mathematical and physical �elds. They serve as
crucial tools in understanding the geometric structure of a manifold more e¤ec-
tively. Submanifolds allow for the local analysis of the geometric properties of a
larger manifold, which is especially useful for interpreting complex geometric struc-
tures. Investigating how special structures on a manifold such as contact structures,
complex structures, or Lorentzian metrics project onto submanifolds contributes to
the classi�cation and deeper understanding of the ambient manifold.
In physics, the spatial and temporal subdivisions of the universe are often mod-

eled as submanifolds. For instance, the path traced by a particle is a geodesic
curve, which is a one-dimensional submanifold. In general relativity, submanifolds
are used to represent the distribution of matter and energy within a space-time
manifold.
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In surface modeling and geometric processing (e.g., in 3D graphics), submanifold
structures play a foundational role. Minimal surfaces, in particular, have important
applications in aerodynamics and architecture. Con�guration spaces in robotics are
often modeled as manifolds, and the possible motions of a robotic arm are described
as submanifolds within these spaces.
Characterizing invariant submanifolds of manifolds is an important problem.

Invariant submanifolds of (LCS)n� manifolds by S.K. Hui et al. [1], invariant
submanifolds of LP-Sasakian manifolds by V.Venkatesha et al. [2], invariant sub-
manifolds of Kenmotsu manifolds by S.Sular et al. [3], invariant submanifolds of
(k; �)�contact manifolds by M.S. Siddesha et al [4] have been discussed and re-
vealed many important properties of this submanifolds. Similarly, this problem has
been addressed by many other authors ([5],[6],[7],[8],[9]). Similarly, S.K. Hui et al.
studied the pseudoparallel contact submanifolds of Kenmotsu manifolds in [10] and
the Chaki-pseudoparallel invariant submanifolds of Sasakian manifolds in [11].
In this paper we investigated invariant submanifolds of Lorentzian Kenmotsu

manifolds. We obtained some important characterizations for total geodesic sub-
manifolds of Lorentzian Kenmotsu manifolds. We considered pseudoparallel, 2-
pseudoparallel, Ricci generalized pseudoparallel, Ricci generalized 2-pseudoparallel
submanifolds of these manifolds one by one and studied the geometry of Lorentzian
Kenmotsu manifolds.

2. Preliminaries

A n-dimensional di¤erentiable manifold ~M is called Lorentzian �-Kenmotsu
manifold if it admits a (1; 1)-tensor �eld �, a vector �eld �, a 1-form � and Lorentzian
metric g which satisfy the conditions

(1) �2X = X + � (X) �; g (X; �) = � (X) ;

(2) � (�) = �1; �� = 0; � (�X) = 0;

(3) g (�X; �Y ) = g (X;Y ) + � (X) � (Y ) ;

for all X;Y 2 �
�
~M
�
, where �

�
~M
�
is the Lie algebra of smooth vector �elds on

~M . Also a Lorentzian �-Kenmotsu manifold ~M is satisfying

(4) ~rX� = � [X � � (X) �] ;

(5)
�
~rX�

�
(Y ) = � [g (X;Y )� � (X) � (Y )] ;

(6)
�
~rX�

�
(Y ) = � [g (�X; Y ) � � � (Y )�X] ;

where ~r denotes the operator of covariant di¤erentiation with respect to the Lorentzian
metric g. Further, on a Lorentzian �-Kenmotsu manifold ~M the following relations
hold [13, 14]:

(7) ~R (X;Y )Z = �2 [g (X;Z)Y � g (Y;Z)X] ;

(8) ~R (�; Y )Z = �2 [�g (Y;Z) � + � (Z)Y ] ;

(9) ~R (X; �)Z = �2 [g (X;Z) � � � (Z)X] ;
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(10) ~R (X;Y ) � = �2 [� (Y )X � � (Y )X] ;

(11) �
�
~R (X;Y )Z

�
= �2g (� (Y )X � � (Y )X;Z) ;

(12) g (QX;Y ) = S (X;Y ) = � (n� 1)�2g (X;Y ) ;

(13) S (X; �) = � (n� 1)�2� (X) ;

(14) S (�; �) = (n� 1)�2;

(15) S (�X; �Y ) = S (X;Y )� (n� 1)�2� (X) � (Y ) ;

(16) QX = � (n� 1)�2X; Q� = � (n� 1)�2�;

for any vector �elds X;Y; Z on ~M , where ~R;S and Q denotes the curvature tebsor,
Ricci tensor and Ricci operator on ~M:
Let M be the immersed submanifold of a Lorentzian �-Kenmotsu manifolds

M . Let the tangent and normal subspaces of M in ~M be � (TM) and �
�
T?M

�
,

respectively. Gauss and Weingarten formulas for � (TM) and �
�
T?M

�
are

(17) ~5XY = 5XY + � (X;Y ) ;

(18) ~5XV = �AVX +5?
XV;

respectively, for all X;Y 2 � (TM) and V 2 �
�
T?M

�
; where 5 and 5? are the

connections onM and �
�
T?M

�
, respectively, � and A are the second fundamental

form and the shape operator of M . There is a relation

(19) g (AVX;Y ) = g (� (X;Y ) ; V )

between the second basic form and shape operator de�ned as above. The covariant
derivative of the second fundamental form � is de�ned as

(20)
�
~5X�

�
(Y; Z) = 5?

X� (Y; Z)� � (5XY; Z)� � (Y;5XZ) :

Speci�cally, if ~5� = 0, M is said to be is parallel second fundamental form [5].
Let R be the Riemann curvature tensor of M . In this case, the Gauss equation

can be expressed as

(21)

~R (X;Y )Z = R (X;Y )Z +A�(X;Z)Y �A�(Y;Z)X

+
�
~5X�

�
(Y; Z)�

�
~5Y �

�
(X;Z) ;

for all X;Y; Z 2 � (TM) ; where if�
~rX�

�
(Y; Z)�

�
~rY �

�
(X;Z) = 0;

then it is called curvature-invariant submanifold.
Let ~M be a Riemannian manifold, T is (0; k)�type tensor �eld andA is (0; 2)�type

tensor �eld. In this case, Tachibana tensor �eld Q (A; T ) is de�ned as

(22)
Q (A; T ) (X1; :::; Xk;X;Y ) = �T ((X ^A Y )X1; :::; Xk)

�:::� T (X1; :::; Xk�1; (X ^A Y )Xk) ;
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¼

where,

(23) (X ^A Y )Z = A (Y; Z)X �A (X;Z)Y;

k � 1; X1; X2; :::; Xk; X; Y 2 �
�
T ~M

�
.

3. Characterizations of Lorentzian �-Kenmotsu Manifolds
According to the Tachibana Operator

LetM be the immersed submanifold of an n-dimensional Lorentzian �-Kenmotsu
manifold ~M: If � (TxM) � TxM in every x point, theM manifold is called invariant
submanifold. We note that all of properties of an invariant submanifold inherit the
ambient manifold. From this section of the article, we will assume that the manifold
M is the invariant submanifold of the Lorentzian �-Kenmotsu manifold ~M: So, it
is clear that

(24) � (X; �) = 0; � (�X; Y ) = � (X;�Y ) = �� (X;Y )

for all X;Y 2 � (TM) :
Moreover, for an invariant submanifold M of an n-dimensional Lorentzian �-

Kenmotsu manifold ~M , the following relations hold:

(25) rX� = � [X � � (X) �] ;

(26) R (X;Y ) � = �2 [� (X)Y � � (Y )X] ;

(27) R (�;X)Y = �2 [�g (X;Y ) � + � (Y )X] ;

(28) S (X; �) = � (n� 1)�2� (X) ; S (�; �) = (n� 1)�2;

(29) QX = � (n� 1)�2X;Q� = � (n� 1)�2�:
Let us examine the Q (S; �) = 0 case for the invariant submanifold M of the

n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 1. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q (S; �) = 0, M is a total geodesic.

Proof. Let us assume that

Q (S; �) (U; V ;X;Y ) = 0;

for all X;Y; U; V 2 � (TM) : In this case, we can write
� ((X ^S Y )U; V ) + � (U; (X ^S Y )V ) = 0;

and so

(30) � (S (Y;U)X � S (X;U)Y; V ) + � (U; S (Y; V )X � S (X;V )Y ) = 0:
If we choose X = V = � in (30) and use (13) ; (24) ; we have

(n� 1)�2� (U; Y ) = 0:
Thus, the proof of the theorem is completed. �
Let us examine the Q (g; �) = 0 case for the invariant submanifold M of the

n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 2. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q (g; �) = 0, M is a total geodesic.
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Proof. Let us assume that

Q (g; �) (U; V ;X;Y ) = 0;

for all X;Y; U; V 2 � (TM) : In this case, we can write

� ((X ^g Y )U; V ) + � (U; (X ^g Y )V ) = 0;

and so

(31) � (g (Y; U)X � g (X;U)Y; V ) + � (U; g (Y; V )X � g (X;V )Y ) = 0:

If we choose Y = U = � in (31) and use (1) ; (2) ; (24) ; we have

� (X;V ) = 0:

Thus, the proof of the theorem is completed. �

Let us examine the Q
�
g; �r�

�
= 0 case for the invariant submanifold M of the

n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 3. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q

�
g; �r�

�
= 0, M is a total geodesic.

Proof. Let us assume that

Q
�
g; �r�

�
(U; V; Z;X;Y ) = 0;

for all X;Y; U; V; Z 2 � (TM) : In this case, we can write�
�rU�

�
((X ^g Y )V;Z) +

�
�rU�

�
(V; (X ^g Y )Z) = 0;

and so

(32)
�
�rU�

�
(g (Y; V )X � g (X;V )Y; Z)+

�
�rU�

�
(V; g (Y;Z)X � g (X;Z)Y ) = 0:

If we choose Y = V = � in (32) and use (1) ; (2) ; we have

(33) �
�
�rU�

�
(X;Z)� � (X)

�
�rU�

�
(�; Z) + � (Z)

�
�rU�

�
(�;X) = 0:

If we use (20) in (33), we get

(34)
�r?U� (X;Z) + � (rUX) ; Z + � (X;rUZ)

+�� (X)� (U;Z)� �� (Z)� (U;X) = 0:

If we choose Z = � in (34) and use (1) ; (24) ; we obtain

� (U;X) = 0:

Thus, the proof of the theorem is completed. �

Let us examine the Q
�
S; �r�

�
= 0 case for the invariant submanifold M of the

n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 4. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q

�
S; �r�

�
= 0, M is a total geodesic.
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Proof. Let us assume that

Q
�
S; �r�

�
(U; V; Z;X;Y ) = 0;

for all X;Y; U; V; Z 2 � (TM) : In this case, we can write�
�rU�

�
((X ^S Y )V;Z) +

�
�rU�

�
(V; (X ^S Y )Z) = 0;

and so
(35)�
�rU�

�
(S (Y; V )X � S (X;V )Y; Z) +

�
�rU�

�
(V; S (Y;Z)X � S (X;Z)Y ) = 0:

If we choose Y = Z = � in (35) and use (28) ; we have

(36)
� (n� 1)�2� (V )

�
�rU�

�
(X; �) + (n� 1)�2

�
�rU�

�
(V;X)

+ (n� 1)�2� (X)
�
�rU�

�
(V; �) = 0:

If we use (20) in (36), we get

(37)

(n� 1)�3� (V )� (X;U) + (n� 1)�2
�
r?U� (V;X)

�� (rUV;X)� � (V;rUX)]

+ (n� 1)�2� (X)
�
r?U� (V; �)� � (rUV; �)� � (V;rU�)

�
:

If we choose V = � in (37) and use (1) ; (24) ; (28) ; we obtain

�2 (n� 1)�3� (U;X) = 0:
Thus, the proof of the theorem is completed. �

Let us examine the Q
�
g; �R � �

�
= 0 case for the invariant submanifold M of the

n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 5. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q

�
g; �R � �

�
= 0, M is a total geodesic.

Proof. Let us assume that

Q
�
g; �R � �

�
(U; V; Z;W ;X;Y ) = 0;

for all X;Y; U; V; Z;W 2 � (TM) : In this case, we can write�
�R (X;Y ) � �

�
((U ^g V )Z;W )

+
�
�R (X;Y ) � �

�
(Z; (U ^g V )W ) = 0;

and

(38)

�
�R (X;Y ) � �

�
(g (V;Z)U � g (U;Z)V;W )

+
�
�R (X;Y ) � �

�
(Z; g (V;W )U � g (U;W )V ) = 0:

If we choose Z = U =W = � in (38) and use (1) ; (2) ; we have

(39)
�
�R (X;Y ) � �

�
(� (V ) � + V; �) = 0:

If we use (10) and (24) in (39), we obtain

(40) ��2� (V; � (X)Y � � (Y )X) = 0:
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If we choose X = � in (40) and use (2) ; (24) ; we get

� (V; Y ) = 0:

Thus, the proof is completed. �

Let us examine the Q
�
S; �R � �

�
= 0 case for the invariant submanifold M of the

n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 6. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q

�
S; �R � �

�
= 0, M is a total geodesic.

Proof. The proof of the theorem can be done in a similar way to the proof of the
previous theorem. �

De�nition 1. Let M be an n-dimensional Riemann manifold. The W1-curvature
tensor W1 is de�ned by

(41) W1 (X;Y )Z = R (X;Y )Z +
1

(n� 1) [S (Y; Z)X � S (X;Z)Y ] ;

for all vector �elds on M:

Lemma 1. On an n-dimensional Lorentzian �-Kenmotsu manifold, theW1-curvature
tensor satis�es the following relations:

(42) W1 (�; Y )Z = ��2g (Y; Z) � + 2�2� (Z)Y +
1

n� 1S (Y;Z) �;

(43) W1 (X; �)Z = �
2g (X;Z) � � 2�2� (Z)X � 1

n� 1S (X;Z) �;

(44) W1 (X;Y ) � = 2�
2 [� (X)Y � � (Y )X] ;

(45) � (W1 (X;Y )Z) = 2�
2g (� (Y )X � � (X)Y;Z) :

Let us examine the Q (g;W1 � �) = 0 case for the invariant submanifold M of the
n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 7. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q (g;W1 � �) = 0, M is a total geodesic.

Proof. Let us assume that

Q (g;W1 � �) (U; V; Z;W ;X;Y ) = 0;
for all X;Y; U; V; Z;W 2 � (TM) : In this case, we can write

(W1 (X;Y ) � �) ((U ^g V )Z;W )

+ (W1 (X;Y ) � �) (Z; (U ^g V )W ) = 0;
and

(46)
(W1 (X;Y ) � �) (g (V;Z)U � g (U;Z)V;W )

+ (W1 (X;Y ) � �) (Z; g (V;W )U � g (U;W )V ) = 0:
If we choose Z = U =W = � in (46) and use (2) ; we have

(47) (W1 (X;Y ) � �) (� (V ) � + V; �) = 0:
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If we use (24) and (44) in (47), we obtain

(48) �2�2� (V; � (X)Y � � (Y )X) = 0:
If we choose X = � in (48) and use (2) ; (24) ; we get

� (V; Y ) = 0:

Thus, the proof is completed. �

Finally, let us examine the Q (S;W1 � �) = 0 case for the invariant submanifold
M of the n-dimensional Lorentzian �-Kenmotsu manifold ~M .

Theorem 8. Let M be the invariant submanifold of the n-dimensional Lorentzian
�-Kenmotsu manifold ~M . If Q (S;W1 � �) = 0, M is a total geodesic.

Proof. Let us assume that

Q (S;W1 � �) (U; V; Z;W ;X;Y ) = 0;
for all X;Y; U; V; Z;W 2 � (TM) : In this case, we can write

(W1 (X;Y ) � �) ((U ^S V )Z;W )

+ (W1 (X;Y ) � �) (Z; (U ^S V )W ) = 0;
and

(49)
(W1 (X;Y ) � �) (S (V;Z)U � S (U;Z)V;W )

+ (W1 (X;Y ) � �) (Z; S (V;W )U � S (U;W )V ) = 0:
If we choose X = U =W = � in (49) ; we have

(50)
(W1 (�; Y ) � �) (S (V;Z) �; �)� S (�; Z) (W1 (�; Y ) � �) (V; �)

+S (V; �) (W1 (�; Y ) � �) (Z; �)� S (�; �) (W1 (�; Y ) � �) (Z; V ) = 0:
If we choose Z = � in (50), we obtain

(51) S (�; �)� (V;W1 (�; Y ) �) = 0:

If we use (28) and (44) in (51) ; we have

� (V; Y ) = 0:

Thus, the proof is completed. �
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