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Determining Equations for a Wave Equation Arising Due to
Collapse of Shafts in Power Transmission System

Abstract

The study of wave propagation in mechanical systems plays a crucial role in under-
standing the dynamic behavior of components under stress or failure. One such scenario
is the collapse of shafts in power transmission systems, where the sudden failure of
structural components can trigger wave-like disturbances that propagate through the
system, potentially causing further damage and system-wide disruptions. The ability to
predict and analyze these wave phenomena is essential for ensuring the stability, safety,
and efficiency of power transmission networks. In this paper, we study a fourth-order
nonlinear wave equation which arises due to collapse of shafts in power transmission
systems. Lie symmetry analysis is used to derive the corresponding determining equa-
tions that describe the symmetries of the system, which can then be used to reduce the
problem to lower-order equations, find exact solutions, or gain insights into the under-
lying dynamics. By applying Lie group analysis, we systematically prolonged the cor-
responding infinitesimal generator and applied the symmetry condition to the given
wave equation to yield the required determining equations. These equations enable a
pathway to exact solutions and system simplification. The work reinforces the value of
symmetry-based methods in understanding the dynamic behavior of mechanical sys-
tems under collapse-induced wave propagation.
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1. Introduction

The Lie symmetry method is a powerful approach for analyzing differential equations,
especially when dealing with higher-order equations like the fourth-order wave equation
arising in various engineering problems, such as the collapse of shafts in power trans-
mission systems [1]. Lie symmetry analysis is a method used to identify symmetries in
differential equations and to exploit these symmetries to simplify or solve the equations.
This method provides a more powerful and structured approach to solving complex equa-
tions, especially when dealing with higher-order or nonlinear equations. It can reduce the
problem to simpler forms, provide exact solutions, and offer valuable physical insight
into the problem. The collapse of shafts in power transmission systems in this context
refers to the failure or breakdown of a shaft that is responsible for transmitting mechani-
cal power between components in a machine or system. In the context of power trans-
mission, shafts are critical parts of the mechanical system that transfer rotational energy
from one part (like a motor or turbine) to another (like a generator) [2].
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This method uses group theory to identify symmetries of a differential equation, which in
turn allows one to simplify or reduce the equation, obtain invariant solutions, or discover
new properties of the system [2]. In general, the Lie symmetry method involves finding
continuous transformation groups (Lie groups) that leave a given differential equation in-
variant. These transformations represent the underlying symmetries inherent in the equa-
tion. The essential idea is to determine the infinitesimal generators of the symmetry group
and use them to derive the determining equations, which are the necessary conditions that
the symmetry generators must satisfy [3].

For an ordinary differential equation (ODE), the determining equations come from the in-
finitesimal invariance condition. For a partial differential equation (PDE), the symmetry
generators can be more complex, involving both space and time derivatives. In both cases,
solving the determining equations reveals the symmetries and thus leads to solutions of the
original equation or simplifications [4]. A fourth-order wave equation typically takes the
following form
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The function u(x, t) represents the displacement or deformation (for instance, of a shaft),
and c? isa constant related to the wave speed. In engineering contexts such as the collapse
of shafts in power transmission systems, this equation models the propagation of stress
waves or vibrations through a medium. The symmetry analysis of this equation is crucial
for understanding the behavior of the system, including potential simplifications or re-
ductions to lower-dimensional problems. Fourth order wave equation has been researched
on by several authors in attempting to find the corresponding determining equations. In
addition, the Lie symmetry analysis of fourth-order wave equations has been studied in
various contexts, including applied mathematics, physics, and engineering. The focus of
these studies has often been on determining the symmetries of such equations and using
these symmetries to simplify or find exact solutions to the equations [5]. A number of
authors have devoted their work on finding determining equations for related fourth-order
wave equations through Lie symmetry analysis as discussed below:

In [6], Olver's foundational work provides a comprehensive framework for applying Lie
group theory to both ordinary and partial differential equations. Although this work is
general and not focused on fourth-order wave equations specifically, it establishes the
essential methodology for symmetry analysis. The book discusses the process of deter-
mining symmetry generators, constructing the infinitesimal operator, and solving the
corresponding determining equations. This work is foundational in understanding the Lie
symmetry method and its application to various differential equations, including wave
equations of higher orders. Olver's work is essential because it provides the underlying
theory for symmetry analysis, including the methodology for finding determining equa-
tions for wave equations of any order, including fourth-order equations.

A detailed exploration of the application of Lie group symmetries to differential equations,
particularly focusing on the process of determining symmetries and constructing exact
solutions is well executed in the book authored by Bluman, and Kumei [7]. The authors
discuss how to find symmetries, formulate the corresponding determining equations, and
apply them to specific cases. Although not specifically for power transmission systems, the
techniques in this book are directly applicable to any fourth-order wave equations. It pro-
vides a general framework for symmetry reduction and solving the associated differential
equations. This helps in formulating determining equations for the Lie symmetries of the
wave equation governing the collapse of shafts in mechanical systems.
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Ibragimov [8], focused on the Lie symmetry analysis of ordinary differential equations and
introduced simple methods for the analysis of PDEs of higher orders. The key contribution
is its clear explanation of how to construct Lie algebra from the symmetry groups of
high-order wave equations. It includes models in mechanics that deal with waves in elastic
structures or vibrations; which are analogous to the collapse of shafts in power transmis-
sion systems. This provides concrete steps to derive the determining equations and can be
directly applied to analyze fourth-order wave equations in mechanical settings. He pro-
vides a thorough treatment of the application of Lie groups to both first and higher-order
differential equations, with special attention to symmetries and reduction methods. In the
context of fourth-order wave equations, this work is crucial because it provides a clear
method for identifying the symmetries of such equations and solving the corresponding
determining equations. The book includes examples and methodologies that apply directly
to wave equations of various orders, including fourth-order wave equations arising in
physical systems.

A paper written by Filippo and Katia [9], focused on wave propagation in mechanical
systems, specifically analyzing wave propagation in shafts and beams. The authors used
Lie symmetry analysis to simplify the equations governing such systems, including
fourth-order wave equations that model the vibration and collapse of shafts under stress.
This work is significant because it applies Lie symmetry analysis to practical engineering
problems. It shows how Lie symmetries can be used to reduce the complexity of
fourth-order equations governing wave propagation in power transmission systems, mak-
ing it relevant to applications in mechanical engineering.

Jervin [10], studied symmetry reductions of higher-order Korteweg-de Vries (KdV)
equations, which are related to wave equations in fluid dynamics and nonlinear wave
propagation. The paper focused on the Lie symmetry method applied to fourth-order
equations similar to the form of the wave equation. The work by Jervin is significant be-
cause it demonstrates how symmetry analysis can be applied to fourth-order nonlinear
wave equations. The techniques developed in the work are easily transferable to linear
fourth-order wave equations, such as those arising in mechanical systems like shafts. In
addition, the work done by Evgenii [11], provided methods for obtaining symmetries of
such equations and constructing the corresponding determining equations. The symmetry
techniques outlined by Evgenii can be applied to fourth-order wave equations, especially in
the context of more complex systems (nonlinear cases). Their approach provided a sys-
tematic method for finding determining equations and constructing invariant solutions.

Clarkson and Kruskal [12], explored similarity reductions and the application of symmetry
methods to nonlinear wave equations. While the focus was often on first and second-order
equations, the methods used can be adapted to fourth-order equations, especially in the
study of nonlinear wave propagation. This work is important for understanding how Lie
symmetries can be applied to nonlinear wave equations, which are often encountered in the
analysis of mechanical systems like shafts under stress. It provides techniques that can be
used to reduce the order of fourth-order wave equations and obtain exact solutions.

Grundland, Harnad, Winternitz and Hussain [13-14], focused on applying Lie group
methods to reduce the complexity of nonlinear wave equations. He explored the use of
symmetry analysis for simplifying both linear and nonlinear wave equations, including
fourth-order types. This work is significant in that it applies symmetry reduction methods
specifically to nonlinear wave equations, which are often encountered in engineering ap-
plications involving shafts, beams, and mechanical systems. Ibrahim, and Biazar [15],
focused specifically on the fourth-order beam equation, a special case of wave equations
that describes the bending and vibration of beams and shafts. They used Lie symmetry
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analysis to identify symmetries and determine exact solutions to the governing equations.
This work focused directly on a fourth-order wave equation in the context of structural
mechanics. The study applies Lie symmetry analysis to the beam equation, which has
similarities to the equations governing shaft behavior in power transmission systems.

Stephen and Gandarias [16], focused on symmetry and reduction techniques for high-
er-order PDEs in mechanical systems, including the study of wave propagation, vibrations,
and elasticity in structures. Their model primarily dealt with structural collapse models,
including those in power transmission systems where shaft failure occurs. This offers in-
sights into symmetry reductions and finding determining equations for mechanical systems
governed by higher-order wave equations.

An advanced mathematical model for structural mechanics and wave propagation in me-
chanical systems like power transmission shafts was presented by Craster and Mesarovic
[17]. They discussed how wave equations can be derived from elasticity and vibration
models. While not focused on Lie symmetry analysis, this text helps establish the physical
background for understanding the wave equations governing shaft collapse. The mechan-
ical models discussed provide a framework to apply the symmetry methods found in other
references. Liu and Lou [18], provided a general framework for obtaining symmetries of
nonlinear PDEs, including high-order wave equations. The authors discussed how to find
the Lie symmetries of systems arising from mechanical dynamics, including shaft vibra-
tions and related nonlinear effects. Their focus was on nonlinear wave equations that are
relevant for elastic systems and structural failure (like shaft collapse). This provides ad-
vanced techniques for symmetry classification and determining equation generation for
higher-order nonlinear PDEs in mechanical applications.

The referenced studies collectively establish both the theoretical and practical framework
for applying Lie symmetry analysis for solving the fourth-order wave equations arising
from the collapse of shafts in mechanical systems. They provide methods for identifying
symmetries, constructing determining equations, and solving complex wave equations
that arise in various contexts, including the collapse of shafts in power transmission sys-
tems. Key texts such as Olver’s foundational work and the contributions by Bluman,
Ibragimov, and others lay the groundwork for applying symmetry methods to high-
er-order wave equations. The work dobe by Filippo and Katia [9]; Jervin [10], show prac-
tical applications of these methods in mechanical and engineering contexts. Aminer
[20], found the determining equations for a non-linear fourth order ordinary differential
equation of the form

!
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which arises in studying the group properties of a linear wave equation in an inhomoge-
neous medium. However, this equation does not explain the dynamic motion of the col-
lapse of shafts in power transmission systems. In this paper however, we have derived the
determining equations of a fourth-order nonlinear wave equation associated with shaft

collapse in power transmission systems through Lie symmetry analysis modelled by the
following equation

4
y® - 30070 =0.
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2. Preliminaries

The Lie symmetry analysis of the wave equation arising due to the collapse of shafts in
power transmission involves using Lie groups of transformations to find the symmetries
of the differential equation governing the wave dynamics. These symmetries help in sim-
plifying the problem, reducing the number of independent variables, and finding invariant
solutions to the equation [21-23].

The main goal is to find the infinitesimal generators of the Lie group symmetries. These
are the differential operators G that act on the dependent and independent variables of the
given equation and leave the equation invariant. In order to apply Lie’s method to the
wave equation, we need to compute the prolonged symmetries. Prolongation involves
extending the symmetry operators to act on higher derivatives. The next step is to apply
the infinitesimal symmetry operators to the wave equation and require that the equation
remains invariant under the transformation. This gives us the determining equations for the
components &(X, t), n(x, t) and {(x, t) [24].

To find the determining equations using Lie symmetry analysis for a fourth-order wave
equation, we first need to write down the equation and then identify the infinitesimal
generator of the Lie group that leaves the equation invariant. The determining equations
are then obtained by applying the invariance condition to the equation, which yields a set of
partial differential equations that the coefficients of the infinitesimal generator must satisfy
[23]. For instance, given the general fourth-order wave equation of the form:

y(4) — Czy” =0

The infinitesimal generator G of a Lie group of transformation would be given by

9 9
G = f(x,y)a+n(x,y)@

The n™ prolongation of the infinitesimal generator G would be given by

n
.0
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Where n®© = D, n(=b —y®Op £ and D, is the total derivative operator [22-23].

The invariance condition of the given ordinary differential equation is hence given by ap-
plying the prolonged infinitesimal generator on the given equation evaluated on its surface
and then equated to zero. That is,

G@® [y(4) _ Czy”]|y(4)—c2y’l =

We then apply the Lie symmetry method to the given ordinary differential equation,
computing the prolongations, and using the invariance condition to derive the determining
equations for the infinitesimals &(X, t) and n(x, t) [21].

3. Main Results

Consider a particular form of the fourth order wave equation which arises due to collapse
of shafts in power transmission systems; modelled by the equation

y® =22 =0 €
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We apply the fourth prolongation since our Equation (1) is of 4" order. The n™ extension
according to Mohamed and Leach [21], is given by

. ) - i 1Ty (i d
o=+ Yl - (a0l S @
i=1 i=1

Using Equation (2), we now find the fourth extension, that is, G®* as follows
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Applying the fourth prolongation of the generator on the differential Equation (1), leads
to
s 5 -
a . + ﬂ N I! I
OX oy

" m m n.,n_ "

0 ' " m
Sty - 2 |y-seer]-o
+(ﬁ(4) 4y(4)a 6ym "_ yu " y a(4))

Expanding the above equation results in,
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On differentiating partially Equation (4) we obtain
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Substituting Equation (5) into Equation (6), we obtain the following equations
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On simplifying Equation (7) we obtain

g( yrr)—z (ym)2 ﬂ" _ g ( yrr)—z (ym)Z (yﬂ)ar _ (yr)(yrr) (ym)Z m

+ﬂ(4) 4y(4) ' 6ym " 4yn " y’a(4):0

(8)

The first, second, third, and fourth total derivatives of a« and g can therefore be stated
in terms of partial derivatives as follows. The primes in Equation (8) correspond to the
total derivatives.
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Substituting the above results into Equation (10), we obtain the following
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Expanding Equation (11) and simplifying results in
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Inx,y,y',y" andy"’, Equatlon (12) is an identity, meaning that it holds true for any ar-

bitrary chance of x, y, y’,y"" and y'"’. Being functions of only x and y, « and B must

equal zero for the coefficient of the powers of y',y",y"’, and their combinations. The
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following partial differential equations, what we refer to as determining equations, are
obtained

’ "\ n 462
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Equation (13), Equation (14), Equation (15), and Equation (16), are the required deter-
mining equations for our fourth order wave equation

4
y(4) _ §(yl/)—l(ym)z =0

4 Conclusions

This research successfully applies Lie symmetry analysis to derive determining equations
for a specialized fourth-order wave equation that models shaft collapse in power trans-
mission systems. The derived equations open avenues for analytical simplification, offer-
ing a deeper understanding of wave behavior during structural failure. These findings
could contribute to predictive modeling and safety diagnostics in mechanical engineering.
Further research can be done in this study to include numerical analysis for the validity of
model for practical output.
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