
Normalized solutions for a quasilinear Schrödinger Choquard equation

with exponential critical growth in R2

Abstracts: In this paper, we are concerned with normalized solutions to the following quasilinear
Schrödinger Choquard equation

−∆u− u∆u2 + λu = (Iα ∗ F (u)) f(u), in R2,

with prescribed mass ∫
R2

|u|2 dx = a2,

where a > 0, λ ∈ R, α ∈ (0, 2), Iα denotes the Riesz potential, ∗ denotes the convolution opertor, and
the nonlinearity f has an exponential critical growth in the sense of Trudinger-Moser inequality. Using
Perturbation method and variational methods with Pohozaev manifold, we can avoid the nondifferen-
tiability of the quasilinear term u∆u2 and prove the existence of normalized solutions with some further
assumption.

Keywords: Normalized solutions; Quasilinear Schrödinger equation; Choquard equation; Exponen-
tial critical growth.

1 Introduction

The following generic quasilinear problems have described several physical situations of the form i∂tψ = −∆ψ − ψl ′(|ψ|2)∆l (|ψ|2) + f(|ψ|2)ψ, in R+ × R2,

ψ(0, x) = ψ0(x), in R2,
(1.1)

where l, f are given functions, i denotes the imaginary unit, and ψ : R+ × R2 → C is a complex real
function. It is well known that when l(s) =

√
s, problem (1.1) appears in plasma physics and fluid

mechanics [17, 27], also in the theory of Heisenberg ferromagnet and in condensed matter theory [23],
and the dynamic properties are closely linked to l and f . While, in this article, we focus on the particular
case l(s) = s, that is  i∂tψ = −∆ψ − ψ∆(|ψ|2) + f(|ψ|2)ψ, in R+ × R2,

ψ(0, x) = ψ0(x), in R2.
(1.2)
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A stationary wave solution is a solution of the form ψ(t, x) = e−iλtu(x), where λ ∈ R is a parameter
and u(x) : R2 → R is a time-independent function to be founded. Substitute ψ(t, x) = e−iλtu(x) into
(1.2), we obtain the following stationary equation

−∆u− u∆u2 = λu+ f(u), in R2. (1.3)

For some fixed values of λ, a nontrivial solution of (1.3) is obtained as a critical point of the functional
Jλ : H1,2(R2)→ R, which is given by

Jλ(u) :=
1

2

∫
R2

|∇u|2 dx+

∫
R2

|u|2|∇u|2 dx− 1

2

∫
R2

λ|u|2dx−
∫
R2

F (u) dx,

where F (t) =

∫ t

0
f(s) ds, the primitive function of f(t), on the natural space

H =

{
u ∈ H1,2(R2) :

∫
R2

|u|2|∇u|2 dx < +∞
}
,

another important way to find the nontrivial solutions for (1.3) is to search for solutions with prescribed
mass, that is 

−∆u− u∆u2 = λu+ f(u), in R2,∫
R2

|u|2 dx = a2,
(1.4)

in this case, λ ∈ R is part of the unknown. Moreover, it can be obtained by looking for critical points
of the corresponding energy functional:

I(u) =
1

2

∫
R2

|∇u|2 dx+

∫
R2

|u|2|∇u|2 dx−
∫
R2

F (u) dx (1.5)

on the L2-sphere

S̃(a) =

{
u ∈ H :

∫
R2

|u|2 dx = a2

}
,

which has particular difficulties. To derive the Palais-Smale sequence, one needs new variational meth-
ods, because the derived Palais-Smale sequence may not be bounded; even if the Palais-Smale sequence
is bounded, the weak limit may not be contained in the L2-sphere (even in the radical case). Such
difficulties make the study of normalized solutions for (1.4) much more complicated than (1.3) with
prescribed λ ∈ R.

One quasilinear term

V (u) :=

∫
R2

|u|2|∇u|2 dx

in (1.5) has put forward a new problem: it is not differentiable in the space H. To overcome this
difficulty, during the last ten years, various arguments have been put forward on standing wave solutions,
while very few results are known about equations of the normalized solutions. Using the minimization
methods [26], Nehari manifold approach [18], change variables [9,20] methods, and perturbation method
in a series of paper [19,21,22], that recovers the differentiability by considering a perturbed functional
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on a smaller function space, one can obtain the standing wave soulutions but not normalized solution.
To the best of our knowledge, Houwang Li and Wenming Zou [16] discussed the normalized solutions
for quasilinear problem (1.4) with f(u) = |u|p−2u satisfies p > 4 + 4

N , and a > 0.
Motivated by the results above, considering that there are few results on normalized solutions for

the quasilinear Schrödinger equation with exponential critical growth, in this paper, we focus on the
system (1.4) discussed before, where a ∈ (0, 1), λ ∈ R and f has an exponential critical growth. We
recall that in R2, the natural growth restriction on function f is given by the inequality of Trudinger
and Moser [24,34].

In this paper, we assume that f is a continuous function that satisfies the following conditions:

(f1) lim
t→0

|f(t)|
|t|τ

= 0, for some τ > 2 +
α

2
;

(f2) f has γ0− exponential critical growth, i.e., there exists γ0 > 0 such that

lim
|t|→+∞

|f(t)|
eγt2

=

 0, for γ > γ0,

+∞, for 0 < γ < γ0,

(f3) There exists a constant κ > 3 +
α

2
such that

0 < κF (t) ≤ tf(t), for all t ∈ R\{0}, whereF (t) =

∫ t

0
f(s)ds;

(f4) There exist constants σ > 3 +
α

2
and µ > 0 such that

F (t) ≥ µ|t|σ, for all t ∈ R\{0},

Our main result is as follows:

Theorem 1.1. Assume that f satisfies (f1) − (f4). If a2 < (2+α)π
γ0

, then there exists µ∗ = µ∗(a) > 0

such that problem (1.4) admits a couple of normalized soluition (ua, λa) ∈ H1,2(R2)×R of weak solution,
ua is a radially symmetric function, and λa < 0 for all µ ≥ µ∗.

Remark 1.1. A typical example satisfying (f1)− (f4) is

f(t) = µ|t|p−2teα0 |t|2, for p > 3 +
α

2
, and all t ∈ R.

The organization of this paper is as follows: in Section 2, we state some preliminary lemmas and
perturbation settings. In Section 3, we use the mountain-pass arguments to construct a bounded (PS)
sequence. In Section 4, we prove the existence of critical points for perturbation functional. In Section
??, we study the convergence of critical points for the perturbation functional as η → 0+. Section 5 is
devoted to the proof of Theorem 1.1.

Notations:

• Write |u|p :=

(∫
R2

|u|pdx
) 1
p

with 1 ≤ p <∞.

• Denote H1,2(R2) :=
{
u ∈ L2(R2) | Du ∈ L2(R2)

}
as the Sobolev space with the norm
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‖u‖ :=

(∫
R2

|∇u|2dx+

∫
R2

|u|2dx
) 1

2

.

• Use “→ ” and “ ⇀ ” respectively to denotes the strong and weak convergence in the related function
space.
• Define Bc

R := {x ∈ R2 : |x| > R}.
• Use “C1, C2, C3 · · · ” denotes any positive constants (possibly different).
• Denote on(1) a real sequence with on(1)→ 0 as n→ +∞.

Next, we will introduce the following Gagliardo-Sobolev inequalitity [1]: for any p > 2,

|u|p ≤ Cp|∇u|
γp
2 |u|

1−γp
2 , ∀u ∈ H1,2(R2), (1.6)

where

γp := 2

(
1

2
− 1

p

)
.

and the following Gagliardo-Nirenberg-type inequality [16]:∫
R2

|u|p dx ≤ Cp
(∫

R2

|u|2 dx
)(

4

∫
R2

|u|2|∇u|2 dx
) p−2

4

, ∀u ∈ H1,2(R2). (1.7)

2 Preliminaries

2.1 Preliminary lemmas

We start our study recalling that by (f1) − (f3) and f(t) has critical exponential growth at +∞ with
critical exponential γ0, then fix q > 1 + α

2 , τ > 2 + α
2 , for any ε > 0 and γ > γ0 close to γ0, there exists

a constant C > 0 which depends on ε and µ such that

|f(t)| ≤ ε|t|τ + Cε,µ|t|q−1(eγt
2 − 1) for all t ∈ R, (2.1)

and, it is easy to see that

|F (t)| ≤ ε|t|τ+1 + Cε,µ|t|q(eγt
2 − 1) for all t ∈ R. (2.2)

Now, we recall the following version of Trudinger-Moser inequality as stated in [7].

Lemma 2.1. (i) If γ > 0 and u ∈ H1,2(R2), then∫
R2

(eγu
2 − 1)dx < +∞.

(ii) Moreover, if |∇u|22 ≤ 1, |u|22 ≤ M < +∞, and 0 < γ < 4π, then, there exists a constant C > 0
which depends only on M and γ, such that∫

R2

(eγu
2 − 1)dx ≤ Cγ,M .

And the Hardy-Littlewood-Sobolev inequality, see
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Lemma 2.2. Let t, r > 1, 0 < α < 2, with 1
t + 2−α

2 + 1
r = 2, f ∈ Lt(R2) and g ∈ Lr(R2). Then, there

exists a sharp constant C which depends on t, α, r, such that∫
R2

(Iα ∗ f)gdx ≤ Ct,α,r|f |t|g|r.

According to Lemma 2.2, we arrive at∫
R2

(Iα ∗ F (u))F (u)dx

is well-defined if F (u) ∈ Lt(R2) for t > 1 given by

2

t
+

2− α
2

= 2.

This implies that we must require

F (u) ∈ L
4

2+α (R2).

We also need the following inequality, which will be used in the following lemmas.

(es − 1)t ≤ ets − 1, for t > 1 and s ≥ 0.

Lemma 2.3. Assume that {un} ⊂ S̃(a) is bounded and satisfies

lim sup
n→∞

|∇un|22 ∈
(

0,
(2 + α)π

γ
− a2

)
.

Then for γ > γ0 close to γ0, the sequence {eγ|un|2 − 1} is bounded in Lt(R2) provided t > 1 close to 1.

Proof. Write
β := lim sup

n→∞
||un||22.

Under the assumptions, we have that β ∈
(

0, (2+α)π
γ0

)
. Then we can find some η > 0 such that

β < (2+α)π
γ0+η . Without loss of generality, we may assume that

||un||22 <
(2 + α)π

γ0 + η
, ∀n ∈ N.

Since γ > γ0 close to γ0, we can write it as γ = γ0+ξ. Letting t ∈ (1, 1+ξ) with ξ ∈
(

0,min
{

η
γ0+2 , 1

})
,

we have
lim sup
n→∞

tγ||un||22 ≤ lim sup
n→∞

(1 + ξ)(γ0 + ξ)||un||22 ≤ (η + γ0)β < (2 + α)π < 4π.

Noting that β > 0, and by Lemma2.1, we arrive at

lim sup
n→∞

∫
R2

(eγ|un|
2 − 1)tdx ≤ lim sup

n→∞

∫
R2

(etγ|un|
2 − 1)dx

= lim sup
n→∞

∫
R2

(e
tγ||un||2

(
|un|
||un||

)2
− 1)dx

< +∞.

The lemma is finished.
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Corollary 2.1. Assume that un ⇀ u0 weakly in S̃(a) and lim sup
n→∞

|∇(un − u0)|22 <
(2+α)π

γ − a2. Then

for γ > γ0 close to γ0, we have that {eγ|un|2 − 1} is bounded in Lt(R2) provided t > 1 close to 1.

Proof. We just need to prove that when n large enough, for γ > γ0 and t > 1 close to 1, it still holds

lim sup
n→∞

tγ||un − u0||22 < 4π. (2.3)

Let υn = un − u0. By choosing ω > 0 small enough, there exists some Cω > 0 such that∫
R2

(eγ|un|
2 − 1)tdx ≤

∫
R2

(etγ|un|
2 − 1)dx

=

∫
R2

(etγ|υn+u0|2 − 1)dx

≤
∫
R2

(e(1+ω)tγ|υn|2+Cωtγ|u0|2 − 1)dx.

=

∫
R2

(e(1+ω)tγ|υn|2 − 1)(eCωtγ|u0|
2 − 1)dx+

∫
R2

e(1+ω)tγ|υn|2dx+

∫
R2

eCωtγ|u0|
2
dx− 2

:= I + II + III + IV.

By choosing r > 1 close to 1, according to (2.3), Lemma2.1 and the Hölder inequality, there exists
some C > 0 independent of n such that

I :=

∫
R2

(e(1+ω)tγ|υn|2 − 1)(eCωtγ|u0|
2 − 1)dx

≤
(∫

R2

(e(1+ω)tγ|υn|2 − 1)rdx

)1

r
(∫

R2

(eCωtγ|u0|
2 − 1))r

′
dx

) 1

r′

≤ C,

II :=

∫
R2

e(1+ω)tγ|υn|2dx ≤ C,

III :=

∫
R2

eCωtγ|u0|
2
dx ≤ C,

where r′ = r
r−1 . Hence, {eγ|un|2 − 1} is bounded in Lt(R2)

Lemma 2.4. Assume that {un} ⊂ S̃(a) such that un ⇀ u0 weakly in H1,2
rad(R

2)
⋂
S̃(a) and

lim sup
n→∞

|∇u|22 <
2 + α

γ
− a2. (2.4)

then we arrive at

|un|q(eγ|un|
2 − 1)→ |u|q(eγ|u0|2 − 1) in Lt(R2)
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Proof. Setting
hn(x) = eγ|un|

2−1.

By (2.4) and Lemma 2.3, we have {hn} is a bounded sequence in Lt(R2). By un ⇀ u0 in H1,2
rad(R

2), we

know that un → u a.e. in R2. Thus, we obtain hn(x) = eγ|un|
2−1 → eγ|u|

2−1 a.e. in R2. Then, we have

hn ⇀ h = eγ|u|
2−1 in Lt(R2). (2.5)

Now we show that
|un|q → |u|q in Lt

′
(R2), (2.6)

where t′ = t
t−1 . Then by the embedding H1,2

rad(R
2) ↪→ Lqt

′
(R2) is compact, we have

un → u Lqt
′
(R2).

Thus, we get (2.6). Together (2.5) with (2.6), we know

|un|q(eγ|un|
2 − 1)→ |u|q(eγ|u|2 − 1)in L1(R2).

Then, the proof is complete.

Corollary 2.2. Assume that (f1)− (f3) hold, let {un} ⊂ S̃(a) ∩H1,2
rad(R

2) with

lim sup
n→∞

|∇un|22 <
(2 + α)π

γ
− a2.

If un ⇀ u in H1,2
rad(R

2) and un(x)→ u(x) a.e. in R, then∫
R2

(Iα ∗ F (un)) f(un)φdx→
∫
R2

(Iα ∗ F (u)) f(u)φdx, asn→∞,

for any φ ∈ C∞0 (R2).

Proof. First, we claim that Iα ∗ F (un) belongs to L∞(R2), indeed, by (2.2), we have

|F (un)| ≤ ε|un|τ+1 +Kε|un|q(eγ|un|
2 − 1).

Then

|Iα ∗ F (un)| =
∣∣∣∣∫

R2

Aα
|x− y|2−α

F (un)dx

∣∣∣∣
=

∣∣∣∣∣
∫
|x−y|≤1

Aα
|x− y|2−α

F (un)dx

∣∣∣∣∣+Kε

∣∣∣∣∣
∫
|x−y|≥1

Aα
|x− y|2−α

F (un)dx

∣∣∣∣∣
=

∫
|x−y|≤1

Aαε|un|τ+1

|x− y|2−α
dx+

∫
|x−y|≤1

AαKε|un|q(eγ|un|
2 − 1)

|x− y|2−α
dx+Kε

∫
|x−y|≥1

Aαε|un|τ+1

(x− y)2−α dx

+

∫
|x−y|≥1

Kε|un|q(eγ|un|
2 − 1)dx

:= I + II + III + IV.
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Choose σ ∈ ( 2
α ,

4
2+α), by the Hölder inequality, we get

I : =

∫
|x−y|≤1

Aαε|un|τ+1

|x− y|2−α
dx

≤ Aαε

(∫
|x−y|≤1

|un|(τ+1)σdx

) 1
σ
(∫
|x−y|≤1

1

|x− y|(2−α)σ′dx

) 1
σ′

< C1.

II : =

∫
|x−y|≤1

AαKε|un|q(eγ|un|
2 − 1)

|x− y|2−α
dx

≤ CAαKε

(∫
|x−y|≤1

|un|qσt
′
dx

) 1
t′σ
(∫
|x−y|≤1

(eγσt|un|
2 − 1)dx

) 1
t

< C2.

Choose δ → 0+, st : q1,δ = (τ+1)(2+δ)
δ+α > 2, and t > 1 close to 1, by the Hölder inequality, we get

III :=

∫
|x−y|≥1

Aαε|un|τ+1

(x− y)2−α dx ≤ Aαε

(∫
|x−y|≤1

1

|x− y|2+δ
dx

) 2−α
2+δ
(∫
|x−y|≤1

|un|q1,δdx

) δ+α
τ+δ

< C3,

IV :=

∫
|x−y|≥1

Kε|un|q(eγ|un|
2 − 1)dx ≤ Kε

(∫
|x−y|≤1

|un|qt
′
dx

) 1
t′
(∫
|x−y|≤1

(etγ|un|
2 − 1)dx

) 1
t

< C4,

where σ′ = σ
σ − 1, t′ = t

t−1 . This prove the claim.

Hence, for any φ ∈ C∞0 (R2), we have

|(Iα ∗ F (un))f(un)φ| ≤ C |f(un)| |φ| ≤ ε|un|τ |φ|+ C|un|q−1|φ|(eγ|un|2 − 1).

Let U = suppφ. Then, by Lemma2.4, we obtain∫
U
|un|τ |φ|dx→

∫
U
|u|τ |φ|dx, asn→∞,

and ∫
U
|un|q−1|φ|(eγ|un|2 − 1)dx→

∫
U
|u|q−1|φ|(eγ|u|2 − 1)dx, asn→∞,

Now, applying a variant of the Lebesgue dominated convergence theorem, we can deduce that∫
R2

(Iα ∗ F (un))f(un)φdx→
∫
R2

(Iα ∗ F (u))f(u)φdx, asn→∞.

which completes the proof.
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Corollary 2.3. Assume that (f1)− (f3) hold, let {un} ⊂ S̃(a) ∩H1,2
rad(R

2) with

lim sup
n→∞

|∇un|22 <
(2 + α)π

γ
− a2.

If un ⇀ u in H1,2
rad(R

2) and un(x)→ u(x) a.e. in R, then∫
R2

(Iα ∗ F (un))F (un)dx→
∫
R2

(Iα ∗ F (u))F (u)dx,

and ∫
R2

(Iα ∗ F (un)) f(un)un dx→
∫
R2

(Iα ∗ F (u)) f(u)udx.

Proof. From Corollary2.2, we know
|Iα ∗ F (un)| 6 C.

By (2.2), we have

|F (un)| ≤ ε|un|τ+1 +Kε|un|q(eγ|un|
2 − 1).

where γ > γ0, τ > 2 + 2
α , q > 1 + α

2 . Hence, we have

|(Iα ∗ F (un))F (un)| ≤ C|F (un)| ≤ ε|un|τ+1 + C|un|q(eγ|un|
2 − 1).

By the compact embedding H1,2
rad(R

2) ↪→ Lp(R2) for p > 2, we have

un → u in Lp(R2).

Now, applying a variant of the Lesbesgue dominated convergence theorem, we can deduce that∫
R2

(Iα ∗ F (un))F (un)dx→
∫
R2

(Iα ∗ F (u))F (u)dx, asn→∞.

A similar argument works to show that∫
R2

(Iα ∗ F (un)) f(un)un dx→
∫
R2

(Iα ∗ F (u)) f(u)udx, asn→∞.

2.2 Perturbation setting

In order to recover the differentiability, we define for η ∈ (0, 1],

Iη(u) :=
η

θ

∫
R2

|∇u|θdx+ I(u)

=
1

2

∫
R2

|∇u|2dx+

∫
R2

|u|2|∇u|2dx− 1

2

∫
R2

(Iα ∗ F (u))F (u)dx (2.7)

on the space O := H1,θ(R2)
⋂

H1,2(R2), for some fixed θ, satisfying 2 < θ < 3. Then O is a reflexive
Banach space, and by the Hardy-Littlewood-Sobolev inequality and [16, Lemma A.1], we can know
that Iη ∈ C 1(O). We will consider Iη on the constraint

S(a) :=

{
u ∈ O :

∫
R2

|u|2dx = a2

}
. (2.8)
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Recalling the L2-norm preserved transform [15] H : H1,2(R2)× R→ R and

H(u, s)(x) = esu(esx).

Then, we have

Iη(H(u, s)) :=
η

θ
e2(θ−1)s

∫
R2

|∇u|θdx+ e4s

∫
R2

|u|2|∇u|2dx+
1

2
e2s

∫
R2

|∇u|2dx

− 1

2e(2+α)s

∫
R2

(Iα ∗ F (esu))F (esu)dx. (2.9)

We define

Pη(u) :=
d

ds
|s=0Iη(H(u, s))

= η
2(θ − 1)

θ

∫
R2

|∇u|θdx+ 4

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx+
2 + α

2

∫
R2

(Iα ∗ F (u))F (u)dx

(2.10)

−
∫
R2

(Iα ∗ F (u)) f(u)udx, (2.11)

and Pη ∈ C 1(O), then we define a manifold

Pη(a) := {u ∈ S(a) : Pη(u) = 0} . (2.12)

We have the following results.

Lemma 2.5. Any critical point u of Iη|S(a) is contained in Pη(a).

Proof. By [6, Lemma 3], there exists a λ ∈ R such that

I ′η(u) + λu = 0 in O∗. (2.13)

On the one hand, using (2.13), we obtain

η

∫
R2

|∇u|θdx+ 4

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx+ λ

∫
R2

|u|2dx− 2

∫
R2

(Iα ∗ F (u))f(u)udx = 0. (2.14)

On the other hand, testing (2.13), for more details see [5, Proposition 1], we obtain

η
θ − 2

2θ

∫
R2

|∇u|θdx− 1

2
λ

∫
R2

|u|2dx+
2 + α

4

∫
R2

(Iα ∗F (u))F (u)dx+
1

2

∫
R2

(Iα ∗F (u))f(u)u = 0. (2.15)

Combining (2.14) and (2.15), we can get Pη(u) = 0, so u ∈ Pη(a).

Lemma 2.6. The following statements hold: if supn≥1 Iη(un) < +∞ for un ∈ Pη(a), then

sup
n≥1

max

{
η

∫
R2

|∇un|θdx,
∫
R2

|un|2|∇un|2dx,
∫
R2

|∇un|2dx
}
< +∞.
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Proof. For any u ∈ Pη(a), exists z ∈ R with 1
2k−2−α < z < 1

4 , k > 3 + 2
α , by (f3) we have

Iη(u) = Iη(u)− zPη(u)

= η(
1− 2(θ − 1)z

θ
)

∫
R2

|∇u|θdx+ (1− 4z)

∫
R2

|u|2|∇u|2dx+ (
1− 2z

2
)

∫
R2

|∇u|2dx

− (2 + α)z + 1

2

∫
R2

(Iα ∗ F (u))F (u)dx+ z

∫
R2

(Iα ∗ F (u))F (u)dx

≥ η(
1− 2(θ − 1)z

θ
)

∫
R2

|∇u|θdx+ (1− 4z)

∫
R2

|u|2|∇u|2dx− (
(2 + α)z + 1

2
)

∫
R2

(Iα ∗ F (u))F (u)dx

+ kz

∫
R2

(Iα ∗ F (u))F (u)dx

= η(
1− 2(θ − 1)z

θ
)

∫
R2

|∇u|θdx+ (1− 4z)

∫
R2

|u|2|∇u|2dx+ (
1− 2z

2
)

∫
R2

|∇u|2dx

+

(
kz − (

(2 + α)z + 1

2
)

)∫
R2

(Iα ∗ F (u))F (u)dx

As for 1−(2θ−2)z
θ > 0, 1− 4z > 0, 1−2z

2 > 0, kz − ( (2+α)z+1
2 ) > 0, so the conclusion has finished.

3 The minimax approach

In this section, we will prove that Iη(H(u, s)) on S(a)×R possesses a kind of mountain-pass geometrical
structure.

Lemma 3.1. For any 0 < η ≤ 1 and u ∈ S(a) be arbitrary but fixed, the following statements hold:
(i) |∇H(u, s)|2 → 0+ and Iη(H(u, s))→ 0+ as s→ −∞;
(ii) |∇H(u, s)|2 → +∞ and Iη(H(u, s))→ −∞ as s→ +∞.

Proof. By a straightforward calculation, it follows that∫
R2

|H(u, s)(x)|2dx = a2,

∫
R2

|H(u, s)(x)|ςdx = e(ς−2)s

∫
R2

|u(x)|ςdx for all ς > 2,∫
R2

|∇H(u, s)(x)|2dx = e2s

∫
R2

|∇u(x)|2dx,
∫
R2

|∇H(u, s)(x)|θdx = e(2θ−2)s

∫
R2

|∇u(x)|θdx,∫
R2

|H(u, s)(x)|2|∇H(u, s)(x)|2dx = e4s

∫
R2

|u(x)|2|∇u(x)|2dx.

From the above equalities, fixing ς > 2, as s→ −∞, it follows that

|H(u, s)|ςς → 0+, |∇H(u, s)|22 → 0+, |∇H(u, s)|θθ → 0+,

∫
R2

|H(u, s)|2|∇H(u, s)|2dx→ 0+.

By (2.2), we have

|F (H(u, s))| ≤ ε|H(u, s)|τ+1 +Kε,µ|H(u, s)|q(eγ|H(u,s)|2 − 1), (3.1)

For all γ||H(u, s)||2 < (2 + α)π, by Lemma2.1, we have∫
R2

(
eγ|H(u,s)|2 − 1

)
dx =

∫
R2

(
e
γ||H(u,s)||2

(
|H(u,s)|
||H(u,s)||

)2
− 1

)
dx ≤ C.
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Hence, using Hardy-Littlewood-Sobolev inequality, Minkowski inequality and the Hölder′s inequality,
we deduce that(∫

R2

|F (H(u, s))|
4

2+αdx

) 2+α
4

≤
(∫

R2

[ε|H(u, s)|τ+1dx+Kε,µ|H(u, s)|q(eγ|H(u,s)|2 − 1)]
4

2+αdx

) 2+α
4

≤
(∫

R2

ε|H(u, s)|
4(τ+1)
2+α dx

) 2+α
4

+Kε,µ

(∫
R2

|H(u, s)|
4qt′
2+αdx

) 2+α
4t′
(∫

R2

e
4tγ
2+α
|H(u,s)|2 − 1dx

) 2+α
4t

,

where t, t′ > 1 satisfying 1
t + 1

t′ = 1. Then, there exists t > 1 close to 1 such that

tγ||H(u, s)||2 < (2 + α)π,

which implies that (∫
R2

e
4tγ
2+α
|H(u,s)|2 − 1dx

) 2+α
4t

≤ C. (3.2)

Note that, by (3.2) and the Hölder′s inequality, we arrive at∫
R2

(Iα ∗ F (H(u, s)))F (H(u, s)dx ≤ |F (H(u, s))| 4
2+α
|F (H(u, s))| 4

2+α

≤
(
ε |H(u, s)|τ+1

4(τ+1)
2+α

+ C |H(u, s)|q
4qt′
2+α

)2

.

Thus, we conclude that∫
R2

(Iα ∗ F (H(u, s)))F (H(u, s)dx ≤
(
εe

2τ−α
2

s|u|τ+1
4(τ+1)
2+α

+ Ce
4qt′−4−2α

4t′ s|u|q
4qt′
2+α

)2

.

And then, we have

Iη(H(u, s)) ≥ η

θ
e2(θ−1)s

∫
R2

|∇u|θdx+ e4s

∫
R2

|u|2|∇u|2dx+
1

2
e2s

∫
R2

|∇u|2dx

− 1

2e(2+α)s

∫
R2

(Iα ∗ F (esu))F (esu)dx

≥ η

θ
e2(θ−1)s

∫
R2

|∇u|θdx+ e4s

∫
R2

|u|2|∇u|2dx+
1

2
e2s

∫
R2

|∇u|2dx

−
(
εe

2τ−α
2

s|u|τ+1
4(τ+1)
2+α

+ Ce
(4qt′−4−2α)s

4t′ |u|q
4qt′
2+α

)2

.

:= Iη,1(H(u, s))

Thus, by τ > 2 + α
2 , q > 1 + α

2 , we know that

Iη,1(H(u, s))→ 0+ as s→ −∞,

12

UNDER PEER REVIEW



and
Iη,1(H(u, s))→ −∞ as s→ +∞.

On the other hand, we define

g(z) =

∫
R2

(Iα ∗ F (z))F (z)dx,

by (2.9),

Iη(H(u, s)) :=
η

θ
e2(θ−1)s

∫
R2

|∇u|θdx+ e4s

∫
R2

|u|2|∇u|2dx+
1

2
e2s

∫
R2

|∇u|2dx

− 1

2e(2+α)s

∫
R2

(Iα ∗ F (esu))F (esu)dx.

Set

w(t) = g(
tu

||u||
),

where t = es. By f(3), we know
w′(t)

w(t)
≥ 2k

t

then, by integral operation, we obtain

g(tu) ≥ g(
u

||u||
)s2k||u||2k.

Therefore, we have

Iη(H(u, s)) ≤ C5e
2s + C6e

2(θ−1)s + C7e
4s − C8e

(2k−(2+α))s

:= Iη,2(H(u, s))

Thus, by 2 < 2(θ − 1) < 4 < 2k − (2 + α), we know that

Iη,2(H(u, s))→ 0+ as s→ −∞,

and
Iη,2(H(u, s))→ −∞ as s→ +∞.

Moreover, the inequality below also yields that

Iη(H(u, s))→ 0+ as s→ −∞,

Iη(H(u, s))→ −∞ as s→ +∞.

To recover the compactness, we shall study Iη on the radial space:

Sr(a) := S(a) ∩Or, Or := H1,θ
rad(R

2) ∩H1,2
rad(R

2).
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Lemma 3.2. There exists K(a, µ) > 0 small enough such that

0 < sup
u∈A

Iη(u) < inf
u∈B

Iη(u) (3.3)

with

A =
{
u ∈ Sr(a), η

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx ≤ K(a, µ)
}
,

and

B =
{
u ∈ Sr(a), η

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx = 3K(a, µ)
}
.

Moreover, K(a, µ)→ 0 when µ→∞.

Proof. Firstly, for u ∈ A, and v ∈ B, we have the following estimations

η

θ

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+
1

2

∫
R2

|∇u|2dx

≤max

{
1

θ
,
1

2
, 1

}(
η

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx
)

≤K(a, µ), (3.4)

and

η

θ

∫
R2

|∇v|θdx+

∫
R2

|v|2|∇v|2dx+
1

2

∫
R2

|∇v|2dx

≥min

{
1

θ
,
1

2
, 1

}(
η

∫
R2

|∇v|θdx+

∫
R2

|v|2|∇v|2dx+

∫
R2

|∇v|2dx
)

=
3

θ
K(a, µ). (3.5)

Now, let K(a, µ) < (2+α)π
3γ − a2

3 . Thus, we have

||v||2 = |∇v|22 + |v|22 < 3K(a, µ) + a2 <
(2 + α)π

γ
.

Then, similar as Lemma3.1, we obatin∫
R2

(Iα ∗ F (v))F (v)dx ≤
(
ε|v|τ+1

4(τ+1)
2+α

+ C|v|q
4qt′
2+α

)2

≤ ε|v|2(τ+1)
4(τ+1)
2+α

+ C|v|2q
4qt′
2+α

where τ > 2 + α
2 , q > 1 + α

2 . By the Gagliardo-Sobolev inequality(1.6), we have∫
R2

(Iα ∗ F (v))F (v)dx ≤ C|∇v|2τ−α2 a
2+α
2 + C|∇v|

2qt′−2−α
t′

2 a
2+α
2t′ .

From (f3), we have (Iα ∗ F (u))F (u) > 0 for any u ∈ H1,2(R), then, we have

Iη(v)− Iη(u) ≥
(η
θ

∫
R2

|∇v|θdx+

∫
R2

|v|2|∇v|2dx+
1

2

∫
R2

|∇v|2dx
)

14

UNDER PEER REVIEW



−
(η
θ

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+
1

2

∫
R2

|∇u|2dx
)
− 1

2

∫
R2

(Iα ∗ F (v))F (v)dx

≥ 3

θ
K(a, µ)−K(a, µ)− C (K(a, µ))

2τ−α
2 a

2+α
2 − C (K(a, µ))

2qt′−2−α
2t′ a

2+α
2t′

=
3− θ
θ

K(a, µ)− C (K(a, µ))1+
2τ−(2+α)

2 − C (K(a, µ))1+ 2qt′−2−α−2
2t′

Since τ > 2 + α
2 , 2 < θ < 3 and t′ > 0 with 2qt′−2−α

2t′ > 1 and 3−θ
θ > 0, fixing

K(a, µ) = min

(2 + α)π

3γ0
− a2

3
,

[
3− θ
Cθ

] 2
2τ−(2+α)

,

[
3− θ
Cθ

] 2t′
2qt′−2−2t′−α

 , (3.6)

and so,

Iη(v)− Iη(u) ≥ 3− θ
2θ

K(a, µ) > 0,

which shows the desired result. Finally, in order to prove the limit K(a, µ) → 0 when µ → ∞, fix

u0 ∈ Sr(a) with η

∫
R2

|∇u0|θdx+

∫
R2

|u0|2|∇u0|2dx+

∫
R2

|∇u0|2dx ≤ K(a, µ). Then, (f4) together with

Lemma3.1 ensure that

µ2

2

∫
R2

(Iα ∗ |u0|σ)|u0|σdx ≤
∫
R2

(Iα ∗ F (u0))F (u0)dx ≤ C|u0|2(τ+1)
4(τ+1)
2+α

+ C|u0|2q4qt′
2+α

.

Therefore, we must have C →∞ when µ→∞, and so C →∞ when µ→∞. This limit together with
(3.6) show that K(a, µ)→ 0 when µ→∞.

Similar discussion as the last lemma, we have the following Corollary.

Corollary 3.1. For K(a, µ) > 0 given in (3.6), there holds that Iη(u) > 0, for all u ∈ Sr(a) with

η

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx ≤ K(a, µ). Moreover,

I∗∗η = inf

{
Iη(u) : u ∈ Sr(a) and η

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx =
K(a, µ)

3

}
> 0.

Proof. By Lemma3.1 and the Gagliardo-Nirenberg-type inequality, we have

Iη(u) =
η

θ

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+
1

2

∫
R2

|∇u|2dx− 1

2

∫
R2

(Iα ∗ F (u))F (u)dx

≥ η

θ

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+
1

2

∫
R2

|∇u|2dx− C
(∫

R2

|u|2|∇u|2dx
) 2τ−α

4

− C
(∫

R2

|u|2|∇u|2dx
) 2qt′−2−α

4t′

,

where 2τ−α
4 > 1 and 2qt′−2−α

2t′ > 1. For any u ∈ ∂A(K(a, µ), a),

∂A(K(a, µ), a) :=

{
u ∈ Sr(a) : η

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+

∫
R2

|∇u|2dx = K(a, µ)

}
.
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For a smaller 0 < ρ < K(a, µ), we can get

inf
∂A(ρ,a)

Iη(u) ≥ η

θ

∫
R2

|∇u|θdx+

∫
R2

|u|2|∇u|2dx+
1

2

∫
R2

|∇u|2dx− C
(∫

R2

|u|2|∇u|2dx
) 2τ−α

4

− C
(∫

R2

|u|2|∇u|2dx
) 2qt′−2−α

4t′

,

≥ η

θ

∫
R2

|∇u|θdx+
1

2

∫
R2

|∇u|2dx+ C

∫
R2

|u|2|∇u|2dx

≥ Cρ > 0,

for K(a, µ) > 0 small enough. the proof is completed.

In what follows, we fix u0 ∈ Sr(a) and apply Lemma 3.1, Lemma 3.2 and Corollary 3.1 to get
two numbers s1 = s1(u0, a, µ) < 0, and s2 = s2(u0, a, µ) > 0, the functions u1,µ = H(u0, s1) and
u2,µ = H(u0, s2) satisfy

η

∫
R2

|∇u1,µ|θdx+

∫
R2

|u1,µ|2|∇u1,µ|2dx+

∫
R2

|∇u1,µ|2dx <
K(a, µ)

3
with Iη(u1,µ) > 0,

and

η

∫
R2

|∇u2,µ|θdx+

∫
R2

|u2,µ|2|∇u2,µ|2dx+

∫
R2

|∇u2,µ|2dx > 3K(a, µ) with Iη(u2,µ) < 0.

Now, following the idea from Jeanjean [15], we fix the following mountain pass level given by

γµ(a) := inf
h∈Γ

max
t∈[0,1]

Iη(h(t)),

where

Γ = {h ∈ C([0, 1],Sr(a)) : η

∫
R2

|∇h(0)|θdx+

∫
R2

|h(0)|2|∇h(0)|2dx+

∫
R2

|∇h(0)|2dx < K(a, µ)

3
,

Iη(h(1)) < 0} .

From Corollary 3.1, there exists t0 ∈ (0, 1) such that

max
t∈[0,1]

Iη(h(t)) ≥ Iη(h(t0)) ≥ I∗∗η > 0,

where I∗∗η was given in Corollary 3.1. Then we obtain that

γµ(a) ≥ I∗∗η > 0.

Lemma 3.3. There holds limµ→+∞ γµ(a) = 0.

Proof. In what follows, we set the path h0(t) = H(u0, (1− t)s1 + ts2) ∈ Γ. Then, by (f4),

γµ(a) ≤ max
t∈[0,1]

Iη(h0(t))

≤ max
t∈[0,1]

{
η

θ

∫
R2

|∇h0(t)|θdx+
1

2

∫
R2

|∇h0(t)|2dx+

∫
R2

|h0(t)|2|∇h0(t)|2dx
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−µ
2

2

∫
R2

(Iα ∗ |h0(t)|σ) |h0(t)|σdx
}

= max
t∈[0,1]

{
η

θ
r2θ−2

∫
R2

|∇u0|θdx+
1

2
r2

∫
R2

|∇u0|2dx+ r4

∫
R2

|u0|2|∇u0|2dx

−µ
2

2
r2σ−(2+α)

∫
R2

(Iα ∗ |u0|σ) |u0|σdx
}

:= max
t∈[0,1]

g0(r),

where r := e(1−t)s1+ts2 . Case 1. If 0 < r < 1, we have

g0(r) ≤ r2max

{
1

θ
,
1

2
, 1

}(
η

∫
R2

|∇u0|θdx+

∫
R2

|∇u0|2dx+

∫
R2

|u0|2|∇u0|2dx
)

− µ2

2
r2σ−(2+α)

∫
R2

(Iα ∗ |u0|σ) |u0|σdx

=r2

(
η

∫
R2

|∇u0|θdx+

∫
R2

|∇u0|2dx+

∫
R2

|u0|2|∇u0|2dx
)

− µ2

2
r2σ−(2+α)

∫
R2

(Iα ∗ |u0|σ) |u0|σdx

:= g1(r).

It is not difficult to check that g1 has a unique critical point r̃ on (0,+∞), which is a global maximum
point at positive level.

r̃ =

4

(
η

∫
R2

|∇u0|θdx+

∫
R2

|∇u0|2dx+

∫
R2

|u0|2|∇u0|2dx
)

µ2(2σ − (2 + α))
∫
R2 (Iα ∗ |u0|σ) |u0|σdx


1

2σ−4−α

> 0,

and so,

γµ(a) ≤ C
(

1

µ

) 2
2σ−4−α

→ 0, as µ→ +∞.

Case 2. If r ≥ 1, we have

g0(r) ≤ r4

(
η

∫
R2

|∇u0|θdx+

∫
R2

|∇u0|2dx+

∫
R2

|u0|2|∇u0|2dx
)

− µ2

2
r2σ−(2+α)

∫
R2

(Iα ∗ |u0|σ) |u0|σdx.

Discussed as before, we have

γµ(a) ≤ C
(

1

µ

) 2
2σ−6−α

→ 0, as µ→ +∞.

Hence,

γµ(a) ≤ min

{
C

(
1

µ

) 2
2σ−4−α

, C

(
1

µ

) 2
2σ−6−α

}
→ 0, as µ→ +∞,

for some C > 0 (possibly different) that do not depend on µ > 0.
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To find a Palais-Smale sequence, we consider an auxilary functional

Ĩη(s, u) := Iη(H(u, s)) = Iη(h(t)) : R× Sr(a)→ R. (3.7)

Notice that Ĩη is of class C1, by the symmetric critical point principle [25], a Palais-Smale sequence for

Ĩη|R×Sr(a) is also a Palais-Smale sequence for Ĩη|R×S(a). Denoting the closed sublevel set by

I cη = {u ∈ S(a) : Iη(u) ≤ c} ,

we also define

ση(a) := inf
h̃∈Γη

max
t∈[0,1]

Ĩη(h̃(t)),

where

Γη :=
{
h̃ = (γ, β) ∈ C([0, 1],R× Sr(a)) : η

∫
R2

|∇β(0)|θdx+

∫
R2

|β(0)|2|∇β(0)|2dx+

∫
R2

|∇β(0)|2dx

<
K(a, µ)

3
, Iη(β(1)) < 0, γ(0) = 0, γ(1) = 0

}
,

Obviously, it holds that ση(a) = γµ(a).

The same discussed as in [16, Lemma 3.6], taking a minimizing sequence {h̃n = (0, βn)} ⊂ Γη with

βn ≥ 0 a.e. in R2, there exists a Palais-Smale sequence {(sn, wn)} ⊂ R × Sr(a) for Ĩη|R×Sr(a) at level
ση(a). Let un = H(wn, sn), we have

−∆un − un∆u2
n + λnun = (Iα ∗ F (un))F (un) + on(1), in O∗, (3.8)

Iη(un)→ ση(a) = γµ(a), as n→ +∞,

with the additional property that

|sn|+ distO(wn, βn([0, 1]))→ 0, as n→∞,

Moreover, for some sequence {λn} ⊂ R, and

Pη(un) = η
2(θ − 1)

θ

∫
R2

|∇un|θdx+ 4

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx

+
2 + α

2

∫
R2

(Iα ∗ F (un))F (un)dx−
∫
R2

(Iα ∗ F (un))f(un)undx

→ 0, as n→ +∞. (3.9)

From Lemma 2.6, we know that {un} is bounded in Or, and so, the number λn must satisfy the equality
below

λn =
1

a2

{
−η
∫
R2

|∇un|θdx− 4

∫
R2

|un|2|∇un|2dx−
∫
R2

|∇un|2dx+

∫
R2

(Iα ∗ F (un))f(un)undx

}
+on(1).

Lemma 3.4. There holds

lim sup
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx ≤ 4

k − 3− α
2

γµ(a).
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Proof. Using the fact that Iη(un) = γµ(a) + on(1) and Pη(un) = on(1), it follows that

η
2θ + α

θ

∫
R2

|∇un|θdx+ (6 + α)

∫
R2

|un|2|∇un|2dx+
4 + α

2

∫
R2

|∇un|2dx−
∫
R2

(Iα ∗ F (un))F (un)dx

= (2 + α)γµ(a) + on(1).

Moreover, by Iη(un) = γµ(a) + on(1), we have

6 + α

2

∫
R2

(Iα ∗ F (un))F (un)dx+ (6 + α)γµ(a) + on(1)

= η
6 + α

θ

∫
R2

|∇un|θdx+ (6 + α)

∫
R2

|un|2|∇un|2dx+
6 + α

2

∫
R2

|∇un|2dx

≥ η2(θ + α)

θ

∫
R2

|∇un|θdx+ (6 + α)

∫
R2

|un|2|∇un|2dx+
4 + α

2

∫
R2

|∇un|2dx

=

∫
R2

(Iα ∗ F (un))f(un)undx+ (2 + α)γµ(a) + on(1).

As k > 3 + α
2 , 2 < θ < 3 and (f3), we have that

lim sup
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx ≤ 4

k − (3 + α
2 )
γµ(a).

Lemma 3.5. The sequence {un} satisfies

lim sup
n→+∞

(
η

∫
R2

|∇un|θdx+

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx
)
≤ θ(

k − 1− α
2

k − 3− α
2

)γµ(a).

Hence, there exists µ∗ > 0 such that

lim sup
n→+∞

(
η

∫
R2

|∇un|θdx+

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx
)
<

(2 + α)π

γ0
− a2 for ∀µ ≥ µ∗.

Proof. Since Iη(un) = γµ(a) + on(1), we have

lim sup
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx+ 2γµ(a) + on(1)

= η
2

θ

∫
R2

|∇un|θdx+ 2

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx

>
2

θ

(
η

∫
R2

|∇un|θdx+

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx
)
.

Therefore, by lemma 3.4, we have

lim sup
n→+∞

(
η

∫
R2

|∇un|θdx+

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx
)
≤ θ(

k − 1− α
2

k − 3− α
2

)γµ(a).

By lemma 3.3, we can directly obtain the second inequality, the prove is complete.
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Lemma 3.6. Fix µ ≥ µ∗, where µ∗ is given in Lemma 3.5. Then, {λn} is a bounded sequence with

lim sup
n→+∞

|λn| ≤
(

8θ(k − 1− α
2 ) + 2(2 + α)

a2(k − 3− α
2 )

+

)
γµ(a)

and

lim inf
n→+∞

λn >
2 + α

2a2
lim inf
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx.

Proof. From Lemma 2.6 and Lemma 3.5, we know that {un} is bounded in Or, and the boundedness
of {un} yields that {λn} is bounded, indeed

λn|un|22 = −η
∫
R2

|∇un|θdx− 4

∫
R2

|un|2|∇un|2dx−
∫
R2

|∇un|2dx+

∫
R2

(Iα ∗ F (un))f(un)undx+ on(1),

as for |un|22 = a2, we have

λna
2 = −η

∫
R2

|∇un|θdx− 4

∫
R2

|un|2|∇un|2dx−
∫
R2

|∇un|2dx+

∫
R2

(Iα ∗ F (un))f(un)undx+ on(1).

(3.10)
Hence,

|λn|a2 ≤ η
∫
R2

|∇un|θdx+ 4

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx+

∫
R2

(Iα ∗ F (un))f(un)undx+ on(1).

The limit (3.9) together with Lemma 3.4 and Lemma 3.5 ensure that the sequence

{∫
R2

(Iα ∗ F (un))f(un)undx

}
is bounded, because

lim sup
n→+∞

∫
R2

(Iα ∗ F (un))f(un)undx

< lim sup
n→+∞

[
4

(
η

∫
R2

|∇un|θdx+

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx
)

+
2 + α

2

∫
R2

(Iα ∗ F (un))F (un)dx

]
<

8θ(k − 1− α
2 ) + 2(2 + α)

k − 3− α
2

γµ(a).

which concludes that {λn} is a bounded sequence with

lim sup
n→+∞

|λn| ≤
(

8θ(k − 1− α
2 ) + 2(2 + α)

a2(k − 3− α
2 )

+

)
γµ(a)

In order to proof the second equality, the equality (3.10) together with the limit (3.9) lead to

λna
2 = −η

∫
R2

|∇un|θdx− 4

∫
R2

|un|2|∇un|2dx−
∫
R2

|∇un|2dx+

∫
R2

(Iα ∗ F (un))f(un)undx

+ on(1)

> −η2(θ − 1)

θ

∫
R2

|∇un|θdx− 4

∫
R2

|un|2|∇un|2dx−
∫
R2

|∇un|2dx+

∫
R2

(Iα ∗ F (un))f(un)undx

+ on(1)

=
2 + α

2

∫
R2

(Iα ∗ F (un))F (un)dx+ on(1),

showing the desired result.
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For fixed η ∈ (0, 1] and ∀µ ≥ µ∗, from lemma 3.5, we can conclude that

lim sup
n→+∞

|∇un|22 <
(2 + α)π

γ0
− a2.

According to Corollary 2.3, we deduce that

lim
n→+∞

∫
R2

(Iα ∗ F (un))f(un)undx =

∫
R2

(Iα ∗ F (uη))f(uη)uηdx

and

lim
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx =

∫
R2

(Iα ∗ F (uη))F (uη)dx,

where un ⇀ uη in H1,2
r (R2). The last limit implies that uη 6= 0, because otherwise, by Corollary 2.3

and the limit equation (3.9), we have

lim
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx = lim
n→+∞

∫
R2

(Iα ∗ F (un))f(un)undx = 0,

and by lemma 3.6, we derive that

lim inf
n→+∞

λn ≥
2 + α

2a2

∫
R2

(Iα ∗ F (un))F (un)dx = 0.

Thus, we have λn ≥ 0. Since {un} is bounded in H1,2
r (R2). Corollary 2.3 together with (f1) and (f2)

and the following equality

λn|un|22 = −η
∫
R2

|∇un|θdx− 4

∫
R2

|un|2|∇un|2dx−
∫
R2

|∇un|2dx+

∫
R2

(Iα ∗ F (un))f(un)undx

+ on(1),

leads to

λna
2 = −η

∫
R2

|∇un|θdx− 4

∫
R2

|un|2|∇un|2dx−
∫
R2

|∇un|2dx+ on(1).

From this, one has

0 ≥ − lim inf
n→+∞

λna
2 = lim sup

n→+∞
(−λn)a2

= lim sup
n→+∞

(
η

∫
R2

|∇un|θdx+ 4

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx
)

≥ lim inf
n→+∞

(
η

∫
R2

|∇un|θdx+ 4

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx
)

≥ 0,

then, we obtain that

η

∫
R2

|∇un|θdx+ 4

∫
R2

|un|2|∇un|2dx+

∫
R2

|∇un|2dx→ 0,

and this is impossible, because γµ(a) > 0.

21

UNDER PEER REVIEW



4 Critical points of Iη|S(a)

The above analysis ensure that the weak limit u of {un} is nontrivial. Moreover, the equality

lim inf
n→+∞

λn ≥
2 + α

2a2
lim inf
n→+∞

∫
R2

(Iα ∗ F (un))F (un)dx

ensures that

lim inf
n→+∞

λn =
2 + α

2a2

∫
R2

(Iα ∗ F (uη))F (uη)dx > 0.

From this, going up to subsequence, still denoted by {λn}, we can assume that

λn → λη > 0, as n→ +∞.

Since {un} is bounded, we have
I
′
η(un) + ληun → 0 in O∗.

Then, from [16, Lemma A.2], we have

I
′
η(uη) + ληuη = 0, (4.1)

testing (4.1) with x · ∇uη and uη, we obtain Pη(uη) = 0. It follows that

Pη(un) +

∫
R2

(Iα ∗ F (un))f(un)undx−
2 + α

2

∫
R2

(Iα ∗ F (un))F (un)dx

→ Pη(uη) +

∫
R2

(Iα ∗ F (uη))f(uη)uηdx−
2 + α

2

∫
R2

(Iα ∗ F (uη))F (uη)dx.

Then using the weak lower semicontinuous property, see [10, Lemma 4.3], there must be

η
2(θ − 1)

θ

∫
R2

|∇un|θdx→ η
2(θ − 1)

θ

∫
R2

|∇uη|θdx, (4.2)

∫
R2

|un|2|∇un|2dx→
∫
R2

|uη|2|∇uη|2dx, (4.3)

∫
R2

|∇un|2dx→
∫
R2

|∇uη|2dx. (4.4)

That gives Iη(uη) = limn→+∞ Iη(un) = γµ(a). Moreover, from (4.2)–(4.4), we obtain

I
′
η(un)[un]→ I

′
η(uη)[uη]. (4.5)

Thus combining (4.5) with (4.1), there holds λn|un|22 → λη|uη|22. Since λη > 0, the last limit implies
that un → uη in O, implying that |uη|22 = a2.

Based on the above preliminary works, we conclude that

Theorem 4.1. For any fixed η ∈ (0, 1], there exists a uη ∈ Or \ {0} and a λη ∈ R such that

I
′
η(uη) + ληuη = 0,

Iη(uη) = γµ(a), Pη(uη) = 0,

|uη|22 = a2.
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5 Proof of Theorem 1.1

By Theorem 4.1, we can take

ηn → 0+, I
′
ηn(uηn)− ληnuηn = 0, and Iηn(uηn)→ d∗(a) := lim

ηn→0+
γµ(a) ∈ (0,+∞),

for uηn ∈ Sr(a) with |uηn |22 = a2, then Lemma 3.6 implies that ληn < 0. Now Theorem ?? gives that

there exists v 6= 0, v ∈ H1,2
rad(R

2) ∩ L∞(R2), and λ0 ∈ R such that

I
′
(v)− λ0v = 0, I(v) = d∗(a), and |v|22 = a2.

That is, v is a nontrivial radial solution of (1.4).
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