
Modeling and Optimal Control of Cocoa Black Pod Disease in Osun
State I

Abstract

Cocoa black pod disease poses a significant threat to global cocoa production, affecting both

yield and quality. This article presents a comprehensive study on the modeling and optimal control

of cocoa black pod disease. Using the stability theory of differential equations, we develop, carefully

examine, and numerically implement a mathematical model that takes into account the dynamics

of black pod disease transmission in relation to the stage at which cocoa pods are developing as

well as the disease’s transmission pathways and its control mechanism, the study also explores the

application of optimal control strategies to mitigate the impact of the disease on cocoa crops. Using

the next generation matrix method, the basic reproduction number for Cocoa black pod disease

(CBPD) is discovered. The prerequisites for CBPD-free and endemic equilibria’s local and global

stability are established. According to the sensitivity analysis carried out, the reproduction num-

ber is most susceptible to the rates at which diseased pods are removed, fungicides are applied,

and healthy pods are harvested. To optimally control the disease, Pontryagin’s Maximum Princi-

ple(PMP) was applied to determine the best strategy to optimally control the disease. The result

of the numerical simulations reveals that the combination of two strategies is required to effectively

control the menace of the disease. The proposed optimal control measures provide a foundation

for the design of targeted interventions, aiding cocoa farmers, researchers, and policymakers in

safeguarding global cocoa production against this detrimental disease. This research contributes to

the ongoing efforts to ensure the resilience and sustainability of the cocoa industry in the face of

emerging challenges.
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1. Introduction

The cocoa industry is still faced with problems like crop damage from pests and diseases, de-

creasing output, and environmental and health issues. Diseases that affect cacao includes black pod,

swollen shoot, and witches broom diseases, among others. The prevalence of pests and diseases on

cultivated cacao farms contributes a large and substantial percentage to the loss of the total yield

and quality of the final beans produced [8, 7]. The black pod disease poses a major problem and

also concern to the global cacao world, It is caused by various species of Phytophthora (P), notably

among them are P. megakarya and P. palmivora. Cocoa black pod disease caused by P. megakarya

is a devastating fungal disease and is a soil-borne pathogen [13, 20]. The fungus infects the pods of

the cocoa tree, which are the fruit that contains the cocoa beans. The infection can happen through

wounds or cracks in the pods, or through the flowers and stems of the tree, once the fungus enters

the pod [4], it starts to grow and develop, causing the pod to turn black and rot. The infected

pods eventually fall off the tree, reducing the yield of cocoa beans. P. megakarya thrives in humid

and warm environments, which makes cocoa-growing regions in West and Central Africa particu-

larly vulnerable to the disease. Poor agricultural practices such as overcrowding and lack of proper

sanitation can also contribute to the spread of the disease. The economic impact of cocoa black

pod disease can be devastating for small holder farmers who depend on cocoa production for their

livelihoods. It is estimated that the disease can reduce cocoa yields by up to 70 percent, leading to

significant losses in income for farmers and affecting the global cocoa supply chain, [2, 6, 17, 24].

The disease can be transmitted directly or indirectly [17]. Direct transmission occurs when the

pathogen spreads from tree to tree through infected plant parts such as leaves, stems, or pods. This

can happen when rainwater washes the spores from an infected plant onto healthy plants growing

nearby, or when tools or equipment used in pruning or harvesting infected plants are not properly

disinfected. Indirect transmission occurs when the pathogen is carried by other organisms, such as

insects or animals, that come into contact with infected plants. For example, some studies suggest

that beetles may be responsible for spreading the pathogen between cocoa trees. Infected soil,

water, and wind-blown debris can also spread the disease (Environment to pod transmission) [15].
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Preventing the transmission of P. megakarya requires a combination of measures that include plant-

ing resistant varieties, practicing good sanitation, avoiding the movement of infected plant material,

and using fungicides when necessary.

The bulk of epidermic models found in the literature were created using [11] groundbreaking

research as their foundation. According to [23, 25], the differential equation used in the model

give rise to the basic reproduction number needed to estimate the escalation of the epidemic. A

study of the reproduction number’s sensitivity identifies the factors that have the biggest effects on

disease control and ought to be the main focus of prevention strategies [14, 18]. There are only a

few studies in the literature on the mathematical modeling of cocoa disease [17, 18]. To control the

spread of the disease, the study intends to develop, assess, and apply a new model that captures

the dynamics and control of the disease coupled with direct and indirect modes of transmission.

The risk of the parasitic infection on cacao pods is of extreme uneasiness to cocoa growers and

researchers, nevertheless the principles behind the rise of P megakarya on cacao are unresolved

as a result, it is an increasing desire for fundamental understanding into the epidemiology of P.

megakarya in order to develop practical and effective management strategies; [17]’s work has greatly

contributed in this area, particularly in the area of transmission. In order to determine the best

way to treat the disorder, we also added Removed compartment (R) and Treatment state (T) to

our model. Additionally, we used sensitivity analysis of parameters to determine the most crucial

parameters in deciding the seriousness of the disease.

Furthermore, the article explores the frontier of optimal control, aiming to identify strategies

that not only curb the spread of black pod disease but do so with an eye toward sustainability, eco-

nomic viability, and ecological balance. From targeted fungicide applications to precision pruning

techniques, this research investigates a spectrum of control measures to ascertain the most efficient

and resource-effective approaches. Employing optimization algorithms, the study seeks to uncover

the optimal control parameters that strike a balance between disease containment and the broader

considerations of economic feasibility and environmental impact. In the face of mounting challenges

posed by cocoa black pod disease, this article endeavors to provide a comprehensive framework for

optimal control, offering insights that extend beyond theoretical models to practical, actionable

strategies. By doing so, we aspire to contribute to the resilience and sustainability of cocoa cultiva-

tion, safeguarding the global supply chain and ensuring the continued enjoyment of this indulgent

treat for generations to come.
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2. Cocoa Production in Osun State

Osun State is a significant player in Nigeria’s cocoa production landscape, consistently ranking

among the top producers in the country. The State is the second-largest cocoa producer in Nigeria,

contributing substantially to the national cocoa output. The state boasts fertile soils and favorable

climatic conditions, making it an ideal environment for cocoa cultivation. Cocoa production plays

a vital role in the state’s economy, providing livelihoods for numerous farmers and contributing to

local and national revenue. The Osun State Government recognizes the importance of cocoa and

has implemented various initiatives to promote its production, including: Subsidized seedlings and

fertilizers, Agricultural extension services and Infrastructure development.

To investigate the impact of black pod disease, we surveyed selected cocoa farms across all local

government areas in Osun State. We visited 20 farms per local government and, with the assistance

of local farmers, recorded the number of cocoa pods showing signs of black pod disease.

The plot below display the finding regarding incidence of Cocoa black pod in Osun State.

Figure 1: Line chart displaying incidence of Cocoa black pod disease in Osun State

3. MODEL DEVELOPMENT

In this part, we give a mathematical model that describe the transmission of infection among

the infectious environment, infected pods and the healthy cocoa pods. The total population N(t)
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at time t > 0 was sub-divided according to stages of development of cocoa pods, the first stage of

cocoa pod development which is the floral and fruiting state is called Cherelles (Sc), next is the

young and mature pod stage (Sp), lastly is the ripe pod stage (Sr).

The infectious pod compartment is represented by I, Is denotes the secondary infection(indirect

transmission), likewise the primary infection(direct transmission) Ip are infection transmitted through

the spores from infected pods to healthy pods. T denotes the treated pods and R represent the

removed pod compartment.
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Table 1: Description of model parameters.

Parameter Descriptions Unit value/ Source

range of value

k Cherelles recruitment rate Day−1 12 [3]

do Natural death rate Day−1 0.05 [21]

β1 Primary infection rate at Cherelles stage Day−1 0.05 [17]

β2 Secondary infection rate at Cherelles stage Day−1 0.05 [17]

β3 Primary infection rate at young and mature pod stage Day−1 0.02 [17]

β4 Secondary infection rate at young and mature pod stage Day−1 0.02 [17]

γ1 Transmission rate from Sc to Sp Day−1 0.05 [22]

γ2 Transmission rate from Sp to Sr Day−1 0.027 [21]

γ3 Rate of ripe infected pods Day−1 0.1 Estimated

ψ Healthy pod harvesting rate Day−1 0.01 Estimated

θ1 Rate of fungicide application Day−1 0.1 Estimated

θ2 Rate of recovery of treated pods Day−1 0.09 Estimated

n releasing rate of spore shedding SporesDay−1 0.4 [17]

ω Speed rate of spore shedding SporesDay−1 0.4 [17]

δ Rate of phytosanitary pod removal Day−1 [0-0.8] [17]

No Michaelis constant for infection transmission No. od Spores [0− 1010] [17]
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The inflow of new susceptible into the Cherelles compartment was considered at rate k (recruit-

ment rate), this compartment reduces by (γ1) which is the rate of transmission from Cherelles to

young and mature stage, (do) the natural death rate at Cherelles stage and the forces of infection

rate ((σ1)&(σ2)) denoted by

σ1 =
β1Is

No + Is
, (1)

σ2 =
β2Ip

No + Ip
, (2)

where No is the Michaelis constant for the disease transmission of pod infection, (β1) & (β2) denotes

the primary and secondary infection rate at Cherelles stage respectively.

The young and mature susceptible compartment increases through transmission rate from

Cherelles compartment (γ1) and reduces due to ripening rate (γ2) the ripening rate of young and

mature pods , (do) the natural death rate at young and mature pod stage and forces of infection

(σ3) & (σ4)

σ3 =
β3Is

No + Is
, (3)

σ4 =
β4Ip

No + Ip
, (4)

where (β3) & (β4) denotes the primary and secondary infection rate at mature pod stage respec-

tively.

The ripening susceptible compartment increases by (γ2) the ripening rate of young and mature

pods and decreases by do the natural death rate at this stage and (ψ) is the pod harvesting rate

Infectious compartment increases due to the effective contact rates (σ1) , (σ2), (σ3) , (σ4) and

reduces through the releasing rate of spores (n), (ω) & (θ1), natural death (do), rate of infected

pod removal (δ) and (γ3) which is the ripe infected pod removal rate (the removed ripe pod here

are infected but are still of economic importance).

The treated pods compartment increases due to the effective rate of fungicide spraying (θ1) and

reduces due to the infected pod recovery rate (θ2) and natural death (do).

The recovery compartment increases due to the inflow (θ2) from treatment compartment, ripe

infected pod (γ3) from infected class, healthy ripe pod harvested rate (ψ) and the compartment

reduces due to the natural death (do).
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The production rate of spore release rate n causes the secondary infection compartment to grow,

and the natural death rate (do) causes it to reduce. The main infection compartment rises as a

result of the spore release rate ω and reduces as a result of the natural death rate (do).

The set of first-order ordinary differential equations that are nonlinear governing the transmis-

sion in the figure 2 is provided as follows, under the aforementioned assumptions:

Figure 2: Compartmental diagram for the transmission dynamics of CBPD

dSc
dt

= k − (do + σ1 + σ2 + γ1)Sc,

dSp
dt

= γ1Sc − (σ3 + σ4 + γ2 + do)Sp,

dSr
dt

= γ2Sp − (d0 + ψ)Sr,

dI

dt
= (σ1 + σ2)Sc + (σ3 + σ4)Sp − (n+ ω + θ1 + γ3 + do + δ) I

dT

dt
= θ1I − (θ2 + d0)T, (5)

dR

dt
= ψSr + γ3I + θ2T − doR,

dIs
dt

= nI − doIs

dIp
dt

= ωI − doIp.
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Subject to the initial conditions

(Sc, Sp, Sr, I, T,R, Is, Ip) ≥ 0. (6)

4. MODEL ANALYSIS

In this section, we considered the analysis of the model by considering its feasibility, positivity,

disease free & endemic equilibrium and Stability of the developed model.

4.1. Boundedness(Feasibility) of the Model

Theorem 4.1. The domain Ω =
{

(Sc, Sp, Sr, I, T,R, Is, Ip) ∈ <8
+; 0 ≤ N(t) ≤ k

do

}
for the model

system (5) with non negative starting conditions in <8
+, is positively invariant and attracting.

Proof. Let

N(t) = Sc(t) + Sp(t) + Sr(t) + I(t) + T (t) +R(t) + Is(t) + Ip(t). (7)

Then, we have

dN(t)

dt
=
dSc(t)

dt
+
dSp(t)

dt
+
dSr(t)

dt
+
dI(t)

dt
+
dT (t)

dt
+
dR(t)

dt
+
dIs(t)

dt
+
dIp(t)

dt
, (8)

dN

dt
= k − doN(t)− δI(t), (9)

Equation (9) is known as model population dynamics. In the absence of infection δ = 0, equation

(9) is reduced to a differential inequality,

dN

dt
≤ k − doN(t), (10)

on integrating the differential inequality (10), we have

− 1

do
ln(k − doN(t)) ≤ t+ Co, (where Co is constant of integration) (11)

k − doN(t) ≤ Ae−dot, where A is a constant, A = e−doCo , (12)

at t = 0

k − doN(0) ≤ A, (13)
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substituting equation (13) into (12) yields

N(t) ≤ k

do
(1− e−dt) +N(0)e−dot,

as t→∞

N(t) ≤ k

do
, (14)

hence, the feasible(boundedness) solution for the system (5)is given by

Ω =

{
(Sc, Sp, Sr, I, T,R, Is, Ip) ∈ <8

+; 0 ≤ N(t) ≤ k

do

}
is a compact forward invariant set.

Every solution with a starting condition of <8
+ thus stays in the Ω region for t > 0. As such, the

model system (5) is both mathematically and epidemiologically well-posed.

4.2. Positivity of solutions

The following theorem, which needs to be confirmed, will establish that all solutions of the

system with positive starting data will remain positive for all time t > 0.

Theorem 4.2. System (5) maintains the positivity of the solutions, which means that the system’s

initial conditions for the state variables are always greater than zero for all time t.

Proof. Considering the first equation in system (5),

dSc
dt

= k − (do + σ1 + σ2 + γ1)Sc

dSc
dt
≥ −(do + σ1 + σ2 + γ1)Sc, (15)

Integrating the inequality in (15) gives

Sc(t) ≥ Be−(do+σ1+σ2+γ1)t, (16)

where C1 is constant of integration and B = eC1 ,

at t = 0, equation (16) becomes

Sc(0) ≥ B, (17)

inserting (17) into (16) gives

Sc(t) ≥ Sc(0)e−(do+σ1+σ2+γ1)t ≥ 0, (18)
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since

(do + σ1 + σ2 + γ1)t > 0, (19)

hence Sc(t) is positive for t > 0. Similar proof can be established for the positivity of the other

solutions in equation (5). Thus the solution of the model in equation(5) are positive for all time

t > 0.

4.3. Disease Free Equilibrium (DFE)

When there are no infections among the pods population, it is said to be in a condition of DFE,

all DFE classes will be denoted by (o). In the absence of disease, we assume that Io=Iop = Ios , see

[10] for details.

let

Eo =
(
Soc , S

o
p , S

o
r , I

o, T o, Ro, Ios , I
o
p ,
)

(20)

be the DFE state for the population, therefore the DFE point is given by

Soc =
k

do + γ1

Sop =
γ1k

(do + γ1) (do + γ2)

Sor =
γ2γ1k

(do + γ1) (do + γ2) (do + ψ)
(21)

Ro =
ψγ2γ1k

do (do + γ1) (do + γ2) (do + ψ)

hence, the DFE of the model is

Eo =

(
k

do + γ1
,

γ1k

(do + γ1) (do + γ2)
,

γ2γ1k

(do + γ1) (do + γ2) (do + ψ)
, 0, 0,

ψγ2γ1k

do (do + γ1) (do + γ2) (do + ψ)
, 0, 0

)
.

4.4. Endemic Equilibrium State(EES)

EES (E+) is the state where the disease persist in the pod population, let (see [10] for details.)

E+ =
(
S+
c , S

+
p , S

+
r , I

+, T+, R+, I+s , I
+
p ,
)

(22)

where

S+
c =

k

(do + σ1 + σ2 + γ1)
,

S+
p =

γ1k

(σ3 + σ4 + do + γ2) (do + σ1 + σ2 + γ1)
,
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S+
r =

γ1γ2k

(do + ψ) (σ3 + σ4 + do + γ2) (do + σ1 + σ2 + γ1)
,

I+ =
φ1k

φ2
,

T+ =
θ1kφ1

(θ2 + do)φ2
,

I+s =
nkφ1
φ2

,

I+p =
ωkφ1
φ2

,

R+ = (φ2γ1γ2kψ (θ2 + do) + (do + ψ) (σ3 + σ4 + do + γ2) (σ1 + σ2 + do + γ1) [γ3 (θ2 + do) + θ1θ3]φ1)

/ (φ2do (do + ψ) (θ2 + do) (σ3 + σ4 + do + γ2) (σ1 + σ2 + do + γ1))

where

φ1 = [(σ1 + σ2) (σ3 + σ4 + do + γ2) + γ1 (σ3 + σ4) , ]

φ2 = (n+ ω + θ1 + γ3 + d+ δ) (σ3 + σ4 + do + γ2) (σ1 + σ2 + do + γ1) .

5. BASIC REPRODUCTION NUMBER

The overall number of illnesses caused by one freshly contaminated pods brought into a healthy

community is known as the basic reproduction number (<o). Computation of <o is carried out

using the next generation matrix as laid out in [23]. <o is obtained using

<o = ρ
(
FV −1

)
, (23)

where ρ is the spectral radius of the matrix FV −1 Differential equations associated with I, T , Is

& Is compartment are the infective classes and will be used in the computation of <o.

dI

dt
= (σ1 + σ2)Sc + (σ3 + σ4)Sp,

− (n+ ω + θ1 + γ3 + do + δ) I,

dT

dt
= θ1I − (θ2 + d0)T, (24)

dIs
dt

= nI − doIs,

dIp
dt

= ωI − doIp,
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Operator Fi is the rate at which new infection arises and Vi is the rate which compartments

corresponding to the infection are exited.

Fi =



(
β1Is
No+Is

+
β2Ip
No+Ip

)
Sc +

(
β3Is
No+Is

+
β4Ip
No+Ip

)
Sp

0

0

0

 , Vi =


(n+ ω + θ1 + γ3 + do + δ) I

(θ2 + d0)T − θ1I

doIs − nI

doIp − ωI

 .

Obtaining the partial derivative of Fi and Vi with respect to I, T , Is, Ip, and later substituting the

value of Sc, Sp, Is and Ip at DFE, we obtain F and V as

F =


0 0 β1k

No(do+γ1)
+ β3γ1k

No(do+γ1)(do+γ2)
β2k

No(do+γ1)
+ β4γ1k

No(do+γ1)(do+γ2)

0 0 0 0

0 0 0 0

0 0 0 0



V =


(n+ ω + θ1 + γ3 + do + δ) 0 0 0

−θ1 (θ2 + do) 0 0

−n 0 do 0

−ω 0 0 do

 .

<o, which is the dominant eigenvalue of equation (22) is expressed as

<o =
k (nβ1do + nβ1γ2 + nβ3γ1 + ω β2do + ω β2γ2 + ω β4γ1)

No (do + γ1) do
(
δ do + δ γ2 + ndo + nγ2 + ω do + ω γ2 + do

2 + doγ2 + doγ3 + γ2γ3
) . (25)

Remark 5.1. (i) If <o < 1, the infection on the pods will be decreasing.

(ii) If <o = 0, the pod infection will be constant(remain the same).

(iii) If <o > 1, The infection on the pods will appear more frequently and last longer.

6. Stability Analysis

6.1. Local Stability of DFE State

Theorem 6.1. If <o < 1, the DFE point of the equation (5) is locally asymptotically stable;

otherwise, it is unstable.
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Proof. : Based on the eigenvalue λ of the Jacobian at Eo, the local asymptotic stability is obtained.If

the real parts of λ are all negative, the Eo is locally asymptotically stable, and the Jacobian matrix

at Eo is given as

J(E
o
) =



− (do + γ1) 0 0 0 0 0 − β1Sc
No

− β2Sc
No

0 − (do + γ2) 0 0 0 0 −
β3Sp
No

−
β4Sp
No

0 γ2 (do + ψ) 0 0 0 0 0

0 0 0 − (n + ω + θ1 + γ3 + do + δ) 0 0
β1Sc+β3Sp

N
β2Sc+β4Sp

No

0 0 0 θ1 − (do + θ2) 0 0 0

0 0 ψ γ3 θ2 −do 0 0

0 0 0 ω 0 0 −do 0

0 0 0 ω 0 0 0 −do


(26)

The characteristic equation is given by

λ2 + (n+ ω + θ1 + γ3 + 2do + δ)λ+ do (n+ ω + θ1 + γ3 + do + δ) (1−<o) = 0 (27)

Clearly the eigenvalues of the system are negative, thus Eo will be locally asymptotically stable if

<o < 1 and when ever <o > 1 is unstable and disease will persist.

6.2. Global Stability Analysis

The globally stability of the disease-free and endemic equilibrium is established using the Lya-

punov method and Lasalle’s invariance principle to identify the control condition under which the

disease can be eradicated.

Theorem 6.2. (i) The disease-free equilibrium point Eo tends to remain asymptotically stable

in Ω if <0 ≤ 1,

(ii) The endemic equilibrium point E+ is usually asymptotically stable in Ω if <0 > 1.

Proof. Theorem 5.2 (1) and 5.2 (2) can be proved using a already constructed Lyapunov function,

we adopt the quadratic Lyapunov function used in [9].

Consider the Lyapunov candidate

L =
1

2

[
(Sc − Soc ) +

(
Sp − Sop

)
+ (Sr − Sor ) + (I − Io) + (T − T o) + (R−Ro) + (Is − Ios ) +

(
Ip − Iop

)]2
,

on differentiating the function L with respect to time yields

dL

dt
=

1

2

[
(Sc − Soc ) +

(
Sp − Sop

)
+ (Sr − Sor ) + (I − Io) + (T − T o) + (R−Ro) (Is − Ios ) +

(
Ip − Iop

)] dN
dt
,

(28)
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substituting the value of Soc , Sop , Sor , Io, T o, Ro, Ios , Iop and dN
dt into equation (28) yields

dL

dt
=

[
N − k [(do + γ1) (do + γ2)]

do (do + γ1) (do + γ2)

]
(k − doN − δI)

for I = 0 at DFE
dL

dt
= − 1

do
(k − doN)

2

dL

dt
≤ 0. (29)

hence , L ≤ 0, if k, do and N are positive, this implies that the function L is strictly Lyapunuv

function which indicate the disease free equilibrium point (Eo) is globally asymptotically stable.

Next, we establish prove for Theorem 5.2 (2). Let V define the Lyapunuv function

V : {(Sc, Sp, Sr, I, T,R, Is, Ip) ∈ Ω|Sc, Sp, Sr, I, T,R, Is, Ip > 0} −→ <+
8

( see [12, 19] for details).

V = Sc−S+
c lnSc+Sp−S+

p lnSp+Sr−S+
r lnSr+b1

(
I − I+ ln I + +b2

) (
T − T+ lnT

)
+b3

(
R−R+ lnR

)
+b4

(
Is − I+s ln Is

)
+ b5

(
Ip − I+p ln Ip

)
on differentiating with respect to time

dV

dt
=

(
1− S+

c

Sc

)
dSc
dt

+

(
1−

S+
p

Sp

)
dSp
dt

+

(
1− S+

r

Sr

)
dSr
dt

+ b1

(
1− I+

I

)
dI

dt
+ b2

(
1− T+

T

)
dT

dt

+b3

(
1− R+

R

)
dR

dt
+ b4

(
1− I+s

Is

)
dIs
dt

+ b5

(
1−

I+p
Ip

)
dIp
dt

=

(
1− S+

c

Sc

)
[k − (do + γ1)Sc − (σ1 + σ1)Sc] +

(
1−

S+
p

Sp

)
[γ1Sc − (σ3 + σ4)Sp − (γ2 + do)Sp] +(

1− S+
r

Sr

)
[γ2Sp − (do + ψ)Sr]+b1

(
1− I+

I

)
[(σ1 + σ2)Sc + (σ3 + σ4)Sp − (n+ ω + θ1 + γ3 + do + δ) I]

+b2

(
1− T+

T

)
[θ1I − (θ2 + do)T ]+b3

(
1− R+

R

)
[ψSr + γ3I + θ2T − doR]+b4

(
1− I+s

Is

)
[nI − doIs] +

b5

(
1−

I+p
Ip

)
[ωI − doIp] (30)

Substitute for the value of from equation5 and simplification gives

= −[(1−S
+
c

Sc
)(do+σ1+σ2+γ1)(Sc−S+

c )+γ1(
S+
p

Sp
−1)Sc+(σ3+σ2+do+γ2)[Sp−S+

p ]+γ2)(Sr−S+
r )Sp
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+(do + ψ)[Sr − S+
r ] + b1(σ1 + σ2)(

I+

I
− 1)Sc + b1(σ3 + σ4)(

I+

I
− 1)Sp+

b1(n+ ω + θ1 + γ3 + do + δ)(I − I+) + b2θ1(
I+

I
− 1)I + b2(θ2 + do)(T − T+)+

b3ψ(
R+

R
− 1)Sr + b3γ3(

R+

R
− 1)I + b3θ2(

R+

R
− 1)T + b3do(R−R+) + b4n(

I+

I
− 1)+

b4do(Is − I+s ) + b5ω(
I+p
Ip
− 1)− b5do(Ip − I+p )] (31)

Hence V < 0, if and only if b1, b2, b3, b4,b5 > 0. If V = 0 if and only if Sc = S+
c , Sp = S+

p , Sr = S+
r ,

I = I+, T = T+, R = R+, Is = I+s , Ip = I+p . Therefore E+ is globally asymptotically stable in the

interior of Ω.

We have demonstrated that the disease can be controlled as long as the threshold <o ≤ 1 and

the DFE point Eo are globally asymptotically steady. The endemic equilibrium point is globally

asymptotically stable and the disease will continue if <o > 1. From epidemiological perspective,

the objective is to limit the spread of the illness by lowering <o to less than one and optimizing

economic profits. To accomplish this, it is necessary to determine the variables that have the biggest

effects on the stability of <o.

7. SENSITIVITY ANALYSIS

<o is the epidemic threshold that controls spread, understanding of various disease transmis-

sion, the variables is helpful in determining the most effective control approach. Predicting the

sensitivities of each component involved in <o is crucial. Sensitivity analysis measures how much a

variable has changed in relation to how much the factors have changed.

Definition 7.1. The following formula is used to describe the standardized forward sensitivity

index of a variable B that differently relies on a parameter m: [1, 5].

ZBm =
∂B

∂m
× m

B
(32)

The sensitivity indices of reproduction number <o corresponding to our model parameters is

given as

ZRok =
∂Ro
∂k
× k

Ro
= +1.0000 (33)

In a similar approach, we obtain the remaining indices for the model parameters as displayed in

Table 2.
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Table 2: sensitivity indices of <o.

Parameters Sensitivity indices

k +ve

n +ve

do -ve

ω +ve

δ -ve

ψ -ve

β1 +ve

β2 +ve

β3 +ve

β4 +ve

θ1 -ve

γ1 -ve

γ2 -ve

γ3 -ve

No -ve

17

UNDER PEER REVIEW



The value of <o increases when the index with a positive indication are increased, also the value

of <o reduces when the index with a negative indication are increased, thus making the value with

negative indices a importance parameter used in the control of the disease.

The most sensitive parameters of our model are θ1, δ, γ3, γ1 and do, since it is not practical to

increase do, γ3, γ2, γ1, ψ and do, thus reducing <o is a function of θ1 and δ. The result suggested

that intervention strategy should be targeted at fungicide spraying rate θ1, and rate of infected pod

removal δ.

8. OPTIMAL CONTROL OF COCOA BLACK POD DISEASE

8.1. Mathematical Formulation

The system in equation (5) was extended by incorporating time dependent control u(t).

The optimal control in this article focuses on:

(i) u1 : Prevention against pod infection (practicing good sanitation, avoiding the movement of

infected plant material, pod removal),

(ii) u2 : Treatment effort on the infected pods, they measure includes using an appropriate fungi-

cides application.

The optimal control variables incorporated into equation 5 is given below:

dSc
dt

= k − (do + σ1 + σ2 + γ1 + u1)Sc

dSp
dt

= γ1Sc − (σ3 + σ4 + γ2 + do)Sp

dSr
dt

= γ2Sp − (d0 + ψ)Sr

dI

dt
= (σ1 + σ2 + u1)Sc + (σ3 + σ4)Sp − (n+ ω + θ1 + γ3 + do + δ + u2) I

dT

dt
= (θ1 + u2) I − (θ2 + d0)T

dR

dt
= ψSr + γ3I + θ2T − doR

dIs
dt

= nI − doIs
dIp
dt

= ωI − doIp

(34)
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where 0 ≤ u(t) ≤ 1 is the control on the pod to reduce the disease. The objective function J is

defined over a feasible set of control u(t) applied over the finite time interval [to, T ], which is given

in the equation below

J(∪) = min
∪

∫ T

to

[
W1Sc(t) +W2I(t) +

1

2

(
A1u

2
1 +A2u

2
2

)]
dt (35)

where to, T are called initial and final time respectively. W1 and W2 are weight constraints factors

corresponding to Sc and I respectively, while A1 and A2 are coefficient for each control measure.

The term A1u
2
1 & A2u

2
2 represent the cost associated with the prevention of infection in cherelles

and treated pods respectively. The square of the control variables is taken to remove the severity

of the control applied and the side effects of the fungicides. The integrand is in quadratic form

because we assume that cost are non-linear in nature [16]. Where A1u
2
1 and A2u

2
2 represent the cost

associated with the prevention of infection in cherelles and treated pods respectively, W1 and W2

are weight constraints factors corresponding to Sc and I. The goal of the research is to minimize

the cost of the control u(t) and the number of infected pods, thus we seek an optimal control such

that

J(u∗) = Min {J(u)}. (36)

Pontrayagin’s maximum principle gives the necessary conditions that an optimal control problem

must satisfy. The principle convert equation (34) and (35) to a problem of minimizing point wise

Hamiltonian H, with respect to u(t) defined by

H(Sc, Sp, Sr, I, T,R, Is, Ip, u1, u2, t) = W1Sc(t)+W1I(t)+
A1

2
u21+

A2

2
u22+

8∑
i=1

λiqi(t, x, u1, u2), (37)

where λi are adjoint variables. Considering

∂H

∂y
= −∂λi

∂t
, (38)
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we have

− ∂H
∂Sc

= −W1 + λ1

[
d+ β1

No+Is
Is + β2

No+Ip
Ip + γ1 + u1

]
− λ2γ1 − λ4

[
β1

No+Is
Is + β2

No+Ip
Ip + u1

]
− ∂H
∂Sp

= λ2

[
β3No + IsIs + β4

No+Ip
Ip + γ2 + d

]
− λ3γ2 − λ4

[
β3

No+Is
Is + β4

No+Ip
Ip

]
− ∂H
∂Sr

= λ3 [d+ ψ] + λ6ψ

−∂H
∂I

= −W2 + λ4 (n+ ω + θ1 + γ3 + d+ δ + u2)− λ5 (θ1 + u2)− λ6γ3 − λ7n− λ8ω

−∂H
∂R

= λ6d

−∂H
∂Is

= λ1

[
β1

(No+Is)2
ScNo

]
+ λ2

[
β3

(No+Is)2
SpNo

]
− λ4

[
β1

(No+Is)2
ScNo

]
−
[

β3

(No+Is)2
SpNo

]
+ λ7d

−∂H
∂Ip

= +λ1

[
β1

(No+Ip)2
ScNo

]
+ λ2

[
β4

(No+Ip)2
SpNo

]
− λ4

[
β2

(No+Ip)2
ScNo

]
−
[

β4

(No+Ip)2
SpNo

]
+ λ8d

(39)

Therefore, the adjoint equation in (34) is obtained as

dλ1
dt

= −W1 + (λ1 − λ4)
[

β1

No+Is
Is + β2

No+Ip
Ip + u1

]
+ λ1d+ (λ1 − λ2) γ1

dλ2
dt

= (λ2 − λ4)
[

β3

No+Is
Is + β4

No+Ip
Ip

]
+ (λ2 − λ3) γ2 + λ2d

dλ3
dt

= (λ3 − λ6)ψ + λ3d

dλ4
dt

= −W2 + (λ4 − λ7)n+ (λ4 − λ8)ω + (λ4 − λ6) γ + (λ4 − λ5) (θ1 + u2 + λ4d+ λ4δ)

dλ5
dt

= (λ5 − λ6) θ2 + λ5d

dλ6
dt

= λ6d

dλ7
dt

= (λ1 − λ4) β1

(No+Is)2
ScNo + (λ2 − λ4) β3

(No+Is)2
ScNo + λ7d

dλ8
dt

= (λ1 − λ4) β2

(No+Ip)2
ScNo + (λ2 − λ4) β4

(No+Ip)2
SpNo + λ8d

(40)

the transversality conditions

λ1(tf) = λ2(tf) = λ3(tf) = λ4(tf) = λ5(tf) = λ6(tf) = λ7(tf) = λ8(tf) = 0

We maximize the Hamitonian with respect to the control u1, u2, thus we differentiate with

respect to u1, u2 to obtain the following
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∂H

∂u1
= A1u1 + (λ4 − λ1)Sc

∂H

∂u2
= A2u2 + (λ5 − λ4) I

(41)

Solving equation (41) by letting ∂H
∂u1

= ∂H
∂u2

= 0, we obtain

u1 = λ1−λ4

A1
Sc

u2 = λ4−λ5

A2
I

(42)

Imposing the bounds 0 ≤ u1 ≤ u1max and 0 ≤ u2 ≤ u2max on the controls.Then the optimal control

are characterized as:

u∗1(t) = min

{
max(0,

(λ1 − λ4)

A1
Sc), u1,max

}
u∗2(t) = min

{
max(0,

(λ4 − λ5)

A2
I), u1,max

}
where u1max(t) = u2max(t) = 1

u1(t) = min
{

max(0, (λ1−λ4)
A1

Sc), 1
}

u2(t) = min
{

max(0, (λ4−λ5)
A2

I), 1
}

(43)

It is important to note that the characterization of the above controls can be written in a simpler

piecewise form given below

u1 =


0, if (λ1−λ4)

A1
Sc ≤ 0

(λ1−λ4)
A1

Sc, if 0 < (λ1−λ4)
A1

Sc < 1,

1, if (λ1−λ4)
A1

Sc ≥ 1

(44)

u2 =


0, if (λ4−λ5)

A2
I ≤ 0

(λ4−λ5)
A2

I, if 0 < (λ4−λ5)
A2

I < 1,

1, if (λ4−λ5)
A2

I ≥ 1

(45)
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9. NUMERICAL SIMULATION

In this section, numerical simulation was carried out to approximate the solution of the ordinary

differential equation formulated for the model. The Runge-Kutta scheme of order four together with

forward- backward sweep method, which is a accurate method was used to solve the formulated op-

timal control model. The forward Runge-Kutta technique is used to solve the state variables, while

the backward fourth order technique is used to solve the adjoint variables with the consideration

of the initial and final condition.

The numerical simulation was carried out with the aid of help of MATLAB software, in order

the see the impact of different combinations of the two controls intervention strategies on the Cocoa

pod infection. The initial values for the model state variables and weight constraints are:

Sc(0) = 1500, Sp(0) = 0, Sr(0) = 0, I(0) = 0, T (0) = 0, R(0) = 0, Is(0) = 800, Ip(0) = 0,

A2 = 20, W1 = 20, W2 = 20, A1 = 20.

The following four control strategies for the numerical simulations are considered.

(i) Strategy 1: Using u1 = 0, u2 = 0

(ii) Strategy 2: Using u1 = 0, u2 6= 0

(iii) Strategy 3: Using u1 6= 0, u2 = 0

(iv) Strategy 4: Using u1 6= 0, u2 6= 0
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Figure 3: control strategies for model

Figure 4: plot of Cherelles compartment against time for Model
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Figure 5: plot of young and mature pod against time Compartment for Model

Figure 6: showing the graph of ripe pod Compartment for Model
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Figure 7: showing the graph of Infected pod Compartment for Model

Figure 8: showing the graph of treated pod Compartment for Model
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Figure 9: showing the graph of secondary pod Compartment for Model

Figure 10: showing the secondary infection compartment for model
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Figure 11: showing primary infection Compartment for Model
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10. DISCUSSION OF RESULTS

In this section, we will delve into the key results presented in Figure 2 to Figure 10 and provide

a comprehensive discussion of their significance. The research intends to determine the impact

of optimal control on the transmission of cocoa black pod disease, i e. to control the rate of

transmission from the infected pods to the susceptible pods. The control is applied in a period

of 90 days which implies that the final time (T = 90). The simulations were carried out using

the values taken from [3], [20] and [21], as presented in Table 1 and some estimation made from

ecological observations.

Figure 2 represents the effect of the control strategies on the infected pods, strategy 3 and

strategy 4 has a reduced number of infected pods when compared with strategy 1 and strategy 2 as

reveal by the plot, thus this signifies that strategy 3 and strategy 4 are more effective in the control

of the disease. Thus, either of the 2 strategies can be applied in the control of the disease.

Figure 3 presents the plot of Cherelles compartment (Sc) with and without control measures,

the susceptible Cherelles compartment reduces with respect to time, but with the application of

control measure, it reduces at faster.

Figure 4 presents the plot of young and mature pod compartment (Sp) with and without control

measures, the graph of young and mature pod compartment without control increases till it reach

its peak at day 20, before it gradually slopes downward till day 63 , when it remains constants for

the rest days considered. Likewise, the graph of young and mature pod compartment with control

measure applied increases till it reach its peak at day 12, before it gradually slopes downward till

day 63 , when it remains constants for the rest days considered.

Figure 5 presents the plot of ripe pod compartment (Sr) with and without control measures,

the graph of ripe pod compartment with and without control increases gradually till it reach its

peak at day 10 and it remains constants for the rest days considered.

Figure 6 presents the plot of infected pod compartment (I) with and without control measures,

graph of infected pod compartment without control increases gradually till it reach its peak at day

10, likewise also for the infected pods with control but with a reduced number of infected pods,

after day 10, there is no significant difference between the infected pods with and without control.

Figure 7 presents the plot of treated pod compartment (T ) with and without control measures,

graph of treated pod compartment increases gradually with respect to time.
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Figure 8 presents the plot of removed pod compartment (R) with and without control measures,

graph of removed pod compartment increases gradually with respect to time. but it take the

removed pods compartment with control lesser days to gradually slopes upward.

Figure 9 presents the plot of secondary infection compartment (Is) with and without control

measures, graph of secondary infection pod compartment increases gradually with respect to time

until it reach a period whereby it will slope downward.

Figure 10 presents the plot of primary infection compartment (Ip) with and without control

measures, graph of primary infection pod compartment increases gradually with respect to time

until it reach a period whereby it will slope downward.

11. CONCLUSION

In conclusion, our mathematical modeling study of black pod disease has provided valuable

insights into the dynamics and spread of the disease, as well as the effectiveness of various control

strategies. Our analysis suggests that the model is epidemiologically and mathematically well-posed.

The model’s associated equilibrium’s stability (both Local and Global) was analyzed qualitatively

and well established. The reproduction number was subjected to a sensitivity analysis to ascertain

the relative significance of the various variables responsible for disease transmission and control,

and this reveals that rate of fungicide application and infected pod remover are two factors that can

be altered to reduce the spread of the disease and for potential long time control, regular harvest

ripe pods and maintaining a healthy environment plays a significant factor in the eradicating the

disease.

The incorporation of optimal control strategies into our analysis has yielded actionable recom-

mendations for cocoa farmers and policymakers alike. By identifying parameters that minimize

disease prevalence while considering economic constraints and ecological sustainability, we have

strived to bridge the gap between theoretical modeling and practical application. This research

underscores the importance of adaptive and sustainable approaches, recognizing that the battle

against cocoa black pod disease requires a dynamic and evolving strategy.

However, it is important to note that our model is based on certain assumptions and limitations,

and there is still much that is not fully understood about the disease. Future research could

incorporate effect of environmental factors into the model development. Overall, the amalgamation

of mathematical modeling and optimal control strategies offers a promising pathway towards a more
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robust and sustainable cocoa industry. The ongoing collaboration between researchers, farmers, and

policymakers is essential for translating these findings into on-the-ground practices that effectively

combat cocoa black pod disease, thereby preserving the integrity and longevity of cocoa cultivation

worldwide.
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